• Title/Summary/Keyword: Target Velocity

검색결과 657건 처리시간 0.033초

함정용 레이더의 표적 속도 보상 방법 (A Method of Velocity Compensation of Target for the Naval Radar System)

  • 조원민
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.508-515
    • /
    • 2009
  • In the naval environment, a naval radar has many obstructions of velocity, such as rotation and velocity of ship. In the common situation, the rotations such as roll, pitch and yaw don't influence the velocity of the target. But because the naval radar is located on the top of the mast, there is some influence to the target velocity. When we trace the target, radar controller doesn't use hits whose doppler banks are zero. So, we must compensate the target velocity for the velocity error. This paper suggests a method of velocity compensation of target by the velocity vector and how to apply to the stack beam radar if we don't know the height of the target.

침투시험에서의 콘크리트 표적크기 영향 분석 (Concrete Target Size Effect on Projectile Penetration)

  • 김석봉;유요한
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.154-159
    • /
    • 2015
  • This paper deals with the effect of concrete target size on penetration of projectiles. We investigated the penetration depth and residual velocity of projectiles using the 2-D axial symmetric model. Most analysis were conducted with 13 kg projectile (striking velocity: 456.4 m/s) and concrete target with compressive strength of 39 MPa. This paper provided penetration depth (or residual velocity) versus ratio D/d (target diameter, D and projectile diameter, d). When the bottom of concrete cylinder was constrained, penetration depth converged to limit depth more than the ratio D/d of 36. The residual velocity of projectile with thin concrete target were investigated. The residual velocity was converged to specific velocity more than the ratio D/d of 16.

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종 (Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors)

  • 조남섭;권지욱;좌동경
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode

  • Shibata, Takaaki;Shinohara, Shigenobu;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.494-497
    • /
    • 1994
  • We propose a novel velocity detection method of moving object based on a speckle pattern on the target surface using a self-mixing laser diode (SMLD). By this measurement, it was confirmed that the speckle signal has its waveform independent of the target velocity, and has its averaged frequency directly proportional to the target velocity. So it will be possible to detect the velocity of the target transversely translating against the laser light beam using a compact measuring system.

  • PDF

SAR-GMTI에서 지상이동표적의 속도 추정 기법 (Ground Moving Target's Velocity Estimation in SAR-GMTI)

  • 배창식;전현무;양동혁;양훈기
    • 한국전자파학회논문지
    • /
    • 제28권2호
    • /
    • pp.139-146
    • /
    • 2017
  • 본 논문에서는 2채널 displaced phase center antenna(DPCA) 기반의 SAR-GMTI 시스템에서 지상이동 표적의 속도 정보를 추정하는 알고리즘을 제안한다. 제시된 알고리즘에서는 이동표적의 across-track 속도는 기존의 along-track interferometry(ATI) 기법을 이용하여 추정이 가능하다고 가정한 후 표적의 along-track 속도를 추정하는 방법을 제시한다. 이를 위해 기존 이동표적 구조를 변형하여 이동표적 속도를 영으로 만들고, 이를 레이다 속도에 반영하여 레이다 속도가 변화된 새로운 기하학적 구조를 얻는다. 이후 합성 개구면(synthetic aperture) 내의 subaperture 신호에 대한 푸리에 변환을 통해 공간 주파수 중심점 위치를 이용하여 표적의 along-track 속도를 추정한다. 시뮬레이션을 통해 제안한 알고리즘의 속도 추정 성능을 검증하고, 또한 추정된 속도가 보상되어 이동표적 영상의 해상도 및 SINR이 개선됨을 보인다.

센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정 (TDOA Based Moving Target Velocity Estimation in Sensor Network)

  • 김용휘;박민수;박진배;윤태성
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.

속도 명령 기반 PID 제어기를 이용한 멀티로터 무인항공기의 표적 자동 추종 시스템 구현 (Implementation of Automatic Target Tracking System for Multirotor UAVs Using Velocity Command Based PID controller)

  • 정현도;고선재;최병조
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.321-328
    • /
    • 2018
  • This paper presents an automatic target tracking flight system using a PID controller based on velocity command of a multirotor UAV. The automatic flight system includes marker based onboard target detection and an automatic velocity command generation replacing manual controller. A quad-rotor UAV is equipped with a camera and an image processing computer to detect the marker in real time and to estimate the relative distance from the target. The marker tracking system consists of PID controller and generates velocity command based on the relative distance. The generated velocity command is used as the input of the UAV's original flight controller. The operation of the proposed system was verified through actual flight tests using a marker on top of a moving vehicle and tracks it to successfully demonstrate its capability using a quad-rotor UAV.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • 대한원격탐사학회지
    • /
    • 제26권3호
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

안구 운동의 생리 (Physiology of Eye Movements)

  • 김지수
    • Annals of Clinical Neurophysiology
    • /
    • 제1권2호
    • /
    • pp.173-181
    • /
    • 1999
  • Eye movements serve vision by placing the image of an object on the fovea of each retina, and by preventing slippage of images on the retina. The brain employs two modes of ocular motor control, fast eye movements (saccades) and smooth eye movements. Saccades bring the fovea to a target, and smooth eye movements prevent retinal image slip. Smooth eye movements comprise smooth pursuit, the optokinetic reflex, the vestibulo-ocular reflex (VOR), vergence, and fixation. Saccades achieve rapid refixation of targets that fall on the extrafoveal retina by moving the eyes at peak velocities that can exceed $700^{\circ}/s$. Various brain lesions can affect saccadic latency, velocity, or accuracy. Smooth pursuit maintains fixation of a slowly moving target. The pursuit system responds to slippage of an image near the fovea in order to accelerate the eyes to a velocity that matches that of the target. When smooth eye movements velocity fails to match target velocity, catch-up saccades are used to compensate for limited smooth pursuit velocities. The VOR subserves vision by generating conjugate eye movements that are equal and opposite to head movements. If the VOR gain (the ratio of eye velocity to head velocity) is too high or too low, the target image is off the fovea, and head motion causes oscillopsia, an illusory to-and-fro movement of the environment.

  • PDF