• Title/Summary/Keyword: Target Strength

Search Result 822, Processing Time 0.026 seconds

Strength Development of the Concrete at Early Age subjected to Low Temperature depending on Admixture Types (혼화재 종류 변화에 따른 저온조건하 콘크리트의 초기강도 발현 특성)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.145-151
    • /
    • 2007
  • In this paper, tests are carried out in order to investigate the strength development of concrete under various binder types, W/B and curing temperature ranged from $5{\sim}20^{\circ}C$. Fly ash and blast furnace slag were incorporated by as much as 30%, respectively. Strength development of concrete are estimated using Logistic model and strength ratio of concrete at 28days to that at early age are also investigated. According to experimental results, it is found that good agreements are obtained between measured values and calculated ones using logistic model below $20^{\circ}C$. Strength ratio of concrete at 28days to that at early age increases in case W/B decreases and curing temperature increases. Tables and graphs for strength ratio of concrete are provided in this paper. It is capable of obtaining and predicting the periods to attain design strength by considering increment factor of strength easily with the table and graphs presented in this paper. This paper presents the reference data to decide removal time of form, time to reach target strength and strength inspection of remicon whether the test specimens meet the specified criteria of compressive strength. Multi regression models with respect to the relationship between 7days compressive strength and 28 days compressive strength depending on W/B and admixture types are presented.

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

Reliability Analysis of Ship′s Longitrdinal Strength for the Rational Ship Structural Design (선박구조설계 합리화를 위한 선체 종강도의 신뢰성 해석)

  • Oi-H. Kim;Byung-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The application of the reliability analysis is investigated as a probabilistic approach to the assessment of ship's structural strength and to the establishment of design format for longitudinal strength. Reliability analyses are carried out for 34 ships of tankers and bulk carriers built in HHI for some failure modes such as tensile yielding, compressive buckling and ultimate strength of hull girder. The safety assessment of each ship, the calculation of sensitivity factors and the derivation of target reliability index are performed. As results. the difference of reliability indices among ships is great for all modes. To provide more uniform levels of safety the establishment of new strength criteria using partial safety factors is performed. The partial safety factors for the design format are obtained according to the AFOSM method and the reliability-conditioned(RC) method. Finally, a design format using partial safety factors has been proposed. We could find out that new strength criteria can produce consistent reliability indices which are close to the target value.

  • PDF

Period of the Strength Correction of the Concrete with the Temperature Level Based on Meteorological Data (기상자료를 이용한 콘크리트의 단계별 기온보정강도 적응기간 산정)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • According to Korean Architectural Standard Specification (KASS) , at the design stage of the specified concrete strength, strength correction with each temperature level should be considered to secure required strength at 28 days even in low temperature condition, In this paper, the period for the strength correction at the stage of mixture design of the concrete using ordinary Portland cement(OPC) specified in KASS was determined with each region of south Korea based on the meteorological data of KMA(Korea meteorological administration) by applying KASS-5 regulation. In case of 28 days of strength control age, the period for strength correction with 6MPa was calculated to $50{\sim}60$ days and, with 3 MPa. to around 80 days. The period for the strength correction was shown to be decreased with the rise of altitude. The period to consider the delay of the strength development due to low temperature including the period of cold weather concrete was nearly 7 months around 1 year. References for determining the strength correction factors with each region of south Korea was provided in this paper. Further investigation of strength correction of the concrete containing blended cement is to studied.

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 2 ) - The Relationship between Acoustic Backscattering Strength and Distribution Density of Fish in a Net Cage- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 2 ) - 어군의 분포밀도와 초음파산란강도의 관계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 1991
  • This paper describes the fish-density dependence of the mean backscattering strength with aggregations of encaged, free-swimming fish of known density in relation to the experimental verification of echo-integration technique for estimating the density of fish shoals. In this experiment, various numbers of gold crussian, Carassius burgeri burgeri, with a mean length of 18.5cm and a mean weight of 205.9g, were introduced into a net cage of approximately 0.76m super(3). During the backscattering measurements. the cage was suspended on the sound axis of the 50kHz transducer having a beam width of 33 degrees at -3dB downpoints. The volume backscattering strengths from fish aggregations were measured as a function of fish density. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. The calibration of echo-sounder system was carried out at field with a steel ball bearing of 38mm in diameter having the target strength of -40.8dB. The dorsal-aspect target strengths on anesthetized specimens of gold crussian used in the cage experiment were measured and compared with the target strength predicted by the fish density-echo energy relationship for aggregations of free-swimming gold crussian in the cage. The results obtained can be summarized as follows: 1. The target strengths in the dorsal aspect on anesthetized specimens of gold crussian, with the mean length of 19.1cm and the mean weight of 210.5g, varied from -40.9dB to -44.8dB with a mean of -42.6dB. This mean target strength did not differ significantly from that predicted by the regression of echo energy on fish density of free-swimming gold crussian in the cage. It suggests that the target-strength measurements on anesthetized fish was valid and can be representative for live, free-swimming fish. 2. The relationship between mean backscattering strength(, dB) and distribution density of gold $crussian(\rho, $ fish/m super(3)) was expressed by the following equation; =-41.9+11 $Log(\rho)$ with a correlation coefficient of 0.97. This result support the existence of a linear relationship between fish density and echo energy, but suggest that this line has steeper slope than the regression by the theory of estimating the density of fish schools.

  • PDF

Properties of Medium Strength Self-Compacting Concrete with Simple Mix design Method (간편 배합설계방법을 통한 중간강도 자기충전 콘크리트의 특성)

  • 최연왕;조선규;최욱;김경환;안성일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.83-88
    • /
    • 2003
  • In this paper, the medium strength self-compacting concrete with simple mix design method was manufactured and investigated about the properties of flowability and strength. Two types of binders like as fly-ash and RP(rock powder) were contained to the SCC in order to obtain the target medium strength of 270-350kgf/$cm^2$. The experimental tests about slump-flow, reaching time to the slump-flow of 50cm, V-funnel and U-box were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The mechanical properties such as compressive strength, splitting tensile strength and static modulus of elasticity were checked with the requirements specified by KS.

  • PDF

The Shear Strength and Deformability of R/C Coupling Beams using Strut-and-Tie Models (스트럿-타이 모델을 이용한 철근 콘크리트 연결보의 전단강도와 변형능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.349-352
    • /
    • 2004
  • In this study, a strut-and-tie models for the coupling beam based on deformations are presented. To design shear-dominated R/C coupling beams, it is important to consider shear strength deterioration with required deformations. This study proposes the method of estimating shear strength of the reinforced concrete coupling beams. The proposed method determines the strain states from target displacements based on the nonlinear truss analysis. The estimated horizontal strain of beam is then used in calculating the strength of the diagonal strut with compatibility conditions. The deterioration of shear strength of the coupling beam depends on the strength degradation of struts due to plastic deformations.

  • PDF

Comparison of EG/AD/S and EG/AD model ice properties

  • Kim, Jung-Hyun;Choi, Kyung-Sik
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • EG/AD/S type model ice was originally selected as the primary model ice material for the MOERI ice tank in Korea. The existence of a sugar component in the EG/AD/S mixture may cause a serious maintenance problem. In order to understand the influence of sugar in the original model ice, a series of tests with EG/AD/S and EG/AD model ices were performed, and their material properties compared. Because the target strength of model ice in the full-scale MOERI ice tank is expensive and difficult to control, tests were performed under cold room conditions using a miniature ice tank. This paper describes the material properties of EG/AD/S and EG/AD model ices, such as flexural strength, compressive strength and elastic modulus. In order to obtain the desired strength and stiffness levels for the model ice, a warm-up process was introduced.

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.

Accurate Localization Scheme using Lateration in Indoor Environments (실내 환경에서 래터레이션을 이용한 위치 측위 기법)

  • Lim, Yu-Jin;Park, Jae-Sung
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.251-258
    • /
    • 2010
  • In an indoor localization method taking the lateration-based approach, the location of a target is estimated with the location of anchor points (APs) and the approximated distances between the target and APs using received signal strength (RSS) measurements. The accuracy of distance estimation affects the localization accuracy of a lateration-based method. Since a radio propagation environment varies randomly in time and space, the highest RSSs do not necessarily give the best estimation of the distances between a target and APs. Thus, all APs hearing a target have been used for localization. However, the accuracy of a lateration-based method degrades if more APs beyond a certain threshold are used because the area of polygon with the APs increases. In this paper, we focus on reducing the size of the polygon to further increase the localization accuracy. We use the centroid of the polygon as a reference point to estimate the relative location of a target in the polygon. Once the relative location is estimated, only the APs which are closest to the target are used for localization to reduce the area of the polygon with the APs. We validate the proposed method by implementing an indoor localization system and evaluating the accuracy of the proposed method in the various experimental environments.