• 제목/요약/키워드: Target Extraction

검색결과 531건 처리시간 0.023초

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

A Review of the Opinion Target Extraction using Sequence Labeling Algorithms based on Features Combinations

  • Aziz, Noor Azeera Abdul;MohdAizainiMaarof, MohdAizainiMaarof;Zainal, Anazida;HazimAlkawaz, Mohammed
    • 인터넷정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.111-119
    • /
    • 2016
  • In recent years, the opinion analysis is one of the key research fronts of any domain. Opinion target extraction is an essential process of opinion analysis. Target is usually referred to noun or noun phrase in an entity which is deliberated by the opinion holder. Extraction of opinion target facilitates the opinion analysis more precisely and in addition helps to identify the opinion polarity i.e. users can perceive opinion in detail of a target including all its features. One of the most commonly employed algorithms is a sequence labeling algorithm also called Conditional Random Fields. In present article, recent opinion target extraction approaches are reviewed based on sequence labeling algorithm and it features combinations by analyzing and comparing these approaches. The good selection of features combinations will in some way give a good or better accuracy result. Features combinations are an essential process that can be used to identify and remove unneeded, irrelevant and redundant attributes from data that do not contribute to the accuracy of a predictive model or may in fact decrease the accuracy of the model. Hence, in general this review eventually leads to the contribution for the opinion analysis approach and assist researcher for the opinion target extraction in particular.

Infrared Target Extraction Using Weighted Information Entropy and Adaptive Opening Filter

  • Bae, Tae Wuk;Kim, Hwi Gang;Kim, Young Choon;Ahn, Sang Ho
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.1023-1031
    • /
    • 2015
  • In infrared (IR) images, near targets have a transient distribution at the boundary region, as opposed to a steady one at the inner region. Based on this fact, this paper proposes a novel IR target extraction method that uses both a weighted information entropy (WIE) and an adaptive opening filter to extract near finely shaped targets in IR images. Firstly, the boundary region of a target is detected using a local variance WIE of an original image. Next, a coarse target region is estimated via a labeling process used on the boundary region of the target. From the estimated coarse target region, a fine target shape is extracted by means of an opening filter having an adaptive structure element. The size of the structure element is decided in accordance with the width information of the target boundary and mean WIE values of windows of varying size. Our experimental results show that the proposed method obtains a better extraction performance than existing algorithms.

An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

  • Feng, Zhiqiang;Wang, Xiaogang;Yang, Zhongfan;Guo, Shaojie;Xiong, Xingzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4292-4307
    • /
    • 2021
  • For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

다중 경로 환경 상태에서 다중 빔 탐색 레이다의 표적 고도 추출 (Target Altitude Extraction for Multibeam Surveillance Radar in Multipath Environmental Condition)

  • 정명수;홍동희;박동철
    • 한국전자파학회논문지
    • /
    • 제18권10호
    • /
    • pp.1203-1210
    • /
    • 2007
  • 다중 빔 탐색 3D 레이다는 디지털 빔 형성 기술을 이용하여 수신시 적층 빔을 형성하는 최신의 3D 레이다 기술이다. 본 논문에서는 다중 경로 환경 상태에서 다중 빔 3D 레이다의 저고도 표적의 고도 추출을 위한 방법을 제안하고 고찰해 보고자 한다. 다중 빔 레이다에서 저고도 표적에서 발생하는 다중 경로 전파 및 레이다 신호 발생 모델링에 대해 기술하고, 거울 반사 상황에서 효과적으로 표적 고도를 추출하기 위해 nelder-mead simplex multipath reduction(NMSMR) 기법에 대해 기술한다. 제안된 알고리듬의 성능을 다양한 표적 고도와 레이다 주파수에 대해 시뮬레이션으로 확인하였다.

CASA 시스템의 비모수적 상관 특징 추출을 이용한 목적 음성 분리 (Target Speech Segregation Using Non-parametric Correlation Feature Extraction in CASA System)

  • 최태웅;김순협
    • 한국음향학회지
    • /
    • 제32권1호
    • /
    • pp.79-85
    • /
    • 2013
  • CASA 시스템의 특징 추출은 시간의 연속성과 채널 간 유사성을 이용하여 청각 요소의 상관지도를 구성하여 사용한다. 채널 간 유사성을 교차 상관 계수를 이용하여 특징 추출 할 경우 상관성을 정량적으로 나타내기 위해 계산량이 많은 단점이 있다. 따라서 본 논문에서는 특징 추출 시 계산 량을 줄이기 위한 방법으로 비모수적 상관 계수를 이용한 특징 추출 방법을 제안하고 이를 CASA 시스템을 통하여 목적 음성을 분리하는 실험을 수행하였다. 목적 음성의 분리 성능을 평가하기 위하여 신호 대 잡음비를 측정한 결과, 제안 방식이 기존 방식에 비해 평균 0.14 dB의 미세한 성능 개선을 보였다.

GPCR 경로 추출을 위한 생물학 기반의 목적지향 텍스트 마이닝 시스템 (BIOLOGY ORIENTED TARGET SPECIFIC LITERATURE MINING FOR GPCR PATHWAY EXTRACTION)

  • KIm, Eun-Ju;Jung, Seol-Kyoung;Yi, Eun-Ji;Lee, Gary-Geunbae;Park, Soo-Jun
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.86-94
    • /
    • 2003
  • Electronically available biological literature has been accumulated exponentially in the course of time. So, researches on automatically acquiring knowledge from these tremendous data by text mining technology become more and more prosperous. However, most of the previous researches are technology oriented and are not well focused in practical extraction target, hence result in low performance and inconvenience for the bio-researchers to actually use. In this paper, we propose a more biology oriented target domain specific text mining system, that is, POSTECH bio-text mining system (POSBIOTM), for signal transduction pathway extraction, especially for G protein-coupled receptor (GPCR) pathway. To reflect more domain knowledge, we specify the concrete target for pathway extraction and define the minimal pathway domain ontology. Under this conceptual model, POSBIOTM extracts interactions and entities of pathways from the full biological articles using a machine learning oriented extraction method and visualizes the pathways using JDesigner module provided in the system biology workbench (SBW) [14]

  • PDF

발산 방향성 강조 대칭변환을 이용한 표적 검출 (Target extraction using divergent-direction-emphasis symmetry transform)

  • 전준형;이희열;최병재;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.665-671
    • /
    • 2010
  • 본 논문은 FLIR(forward looking infra-red) 영상에서 효과적인 표적검출이 가능하도록 명도값의 변화방향이 발산하는 경우의 대칭성을 강조한 발산 방향성 강조 대칭변환(DDEGST, divergent-direction-emphasis generalized symmetry transform)을 제안한다. 제안된 방안에서는 명도값의 변화방향이 발산하는 경우의 대칭도가 강조 될 수 있도록 일반화 대칭변환의 위상 가중함수를 여현함수 대신 지수함수를 사용해서 표적의 명도값이 배경에 비해 상대적으로 크게 나타나는 FLIR 영상에서 효과적인 표적 검출이 가능하도록 한다. 제안한 표적 검출 방안의 성능을 평가하기 위해, 실험에서는 기존의 GST 변환 방법과 제안 방법을 비교, 분석한다. 제안 방법이 FLIR 영상에서 우수한 성능을 가짐을 증명한다.

Convergence Control of Moving Object using Opto-Digital Algorithm in the 3D Robot Vision System

  • Ko, Jung-Hwan;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • 제3권2호
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, a new target extraction algorithm is proposed, in which the coordinates of target are obtained adaptively by using the difference image information and the optical BPEJTC(binary phase extraction joint transform correlator) with which the target object can be segmented from the input image and background noises are removed in the stereo vision system. First, the proposed algorithm extracts the target object by removing the background noises through the difference image information of the sequential left images and then controlls the pan/tilt and convergence angle of the stereo camera by using the coordinates of the target position obtained from the optical BPEJTC between the extracted target image and the input image. From some experimental results, it is found that the proposed algorithm can extract the target object from the input image with background noises and then, effectively track the target object in real time. Finally, a possibility of implementation of the adaptive stereo object tracking system by using the proposed algorithm is also suggested.

확장 칼만필터를 이용한 수중 표적의 불안정 주파수선 추출 기법 (The extraction method of unstable frequency line generated by underwater target using extended Kalman filter)

  • 이성은;황수복;남기곤;김재창
    • 한국음향학회지
    • /
    • 제15권6호
    • /
    • pp.104-109
    • /
    • 1996
  • 수동 소나 시스템에서는 표적을 탐지, 추적 및 식별을 위하여 표적의 방사 소음으로부터 발생되는 주파수선을 주요 특징 인자로 활용한다. 이 연구에서는 수중 표적의 방사 소음으로부터 시간 영역의 표본화된 데이타를 이용한 불안정 주파수선의 추출 기법에 대하여 연구하였다. 불안정 주파수선은 시간에 따라 주파수선이 변화되어 나타나므로 불안정 주파수선 추출을 위하여 비선형 시스템에 유용한 확장 칼만 필터 알고리듬을 적용하였다. 모의 실험 및 표적 신호에 적용하여 제시한 방식이 불안정 주파수선을 추출할 수 있음을 보인다.

  • PDF