• Title/Summary/Keyword: Target DNA

Search Result 786, Processing Time 0.029 seconds

Applications of CRISPR technologies to the development of gene and cell therapy

  • Chul-Sung Park;Omer Habib;Younsu Lee;Junho K. Hur
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.2-11
    • /
    • 2024
  • Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-to-thymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases.

Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer

  • Seung-Yul Lee;Tae Jeong Oh;Sungwhan An;Seung-Hoon Lee
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.37-45
    • /
    • 2024
  • This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.

Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Cho, Shin-Hyeong;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, $FAM^{TM}$, $HEX^{TM}$, $Cy5^{TM}$, and CAL Fluor $Red^{(R)}$ 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was $2{\times}10$ copies for C. parvum and for C. cayetanensis, while it was $2{\times}10^3$ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.

Integration of a target gene into chromosomal genome of BF-2 cells using UV-inactivated snakehead retrovirus (SnRV)

  • Kwon, Se-Ryun;Nishizawa, Toyohiko;Yoshimizu, Mamoru
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.375-382
    • /
    • 2009
  • Integration and expression of a target gene into chromosomal genomes of host cell by retrovirus mediated gene transfer system usually require complicate and laborious procedures. In the present study, we investigate a simple method to integrate a target gene into genome of BF-2 cells using ultraviolet (UV)-inactivated snakehead retrovirus (SnRV), a fish retrovirus. First of all, an optimization of transfection condition was determined with BF-2 cells using Lipofectamine 2000 and Transome. Using 0.5 $\mu\ell$ Lipofectamine 2000 resulted in 33.8, 40.6 and 40.2% of transfection efficacy with high survival rate (minimum 80%) in 0.5, 1 and 2 $\mu{g}$ DNA, respectively, and those of Transome were all less than 5%. It was confirmed that UV-treatment for 5 min was enough to inactivate infectivity of SnRV. Next, a cassette composed of GFP (green fluorescent protein) gene flanked by LTR (long terminal repeats) sequences derived from SnRV was constructed and transfected into BF-2 cells followed by treatment with UV-inactivated SnRV for optimization of integration and expression of the cassette gene. As the results, the fluorescence was expressed in BF-2 cells treated with UV-inactivated SnRV 3 and 5 times, while there was no expression in BF-2 cells with once and non treatment. Accordingly, it was confirmed that GFP gene was integrated into chromosomal genome of BF-2 cells with UV-inactivated SnRV.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

Studies on Molecular Biological and Immunological Diagnosis of Johne's Disease (분자생물학과 면역학적 방법에 의한 소 요네병 진단의 연구)

  • Kim, Tae-jong;Kim, Yun-sik;Kim, Jae-chun;Yoon, Wha-joong;Lee, Won-chang;Shin, SJ;Chang, YF
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.349-358
    • /
    • 1997
  • Mycobacterium paratuberculosis is the etiologic agent of Johne's disease, a chronic inflammatory bowel syndrome in ruminants. The attempts to control or eradicate the disease were severely hampered by the inadequacies of present diagnostic methods. The first purpose of this study was to detect Johne's disease out of 577 cows in the province of Kyunggi, Chungchong, Gangweon and the second purpose was to compare the results of non-absorbed ELISA, absorbed ELISA, PCR, and conventional culture methods. The third purpose was to increase diagnostic specificity, accuracy and rapidity. When non-absorbed ELISA test was conducted with Mycobacterium paratuberculosis antigen, the prevalence of positive was 10.9%. To increase diagnostic specificity, absorbed ELISA test with Mycobacterium phlei was used. In this test, the positive prevalence was 1.7%. For the specific detection of Mycobacterium paratuberculosis, PCR was applied to bacterial culture obtained from fecal samples of cattle. The DNA sequences derived from IS900 were used to prepare DNA primers for detection and identification of Mycobacterium paratuberculosis by PCR. PCR for M paratuberculosis isolated from fecal cultures amplified specific target DNA. PCR was much more rapid than that obtained by conventional culture technique in diagnosis of Johne's disease.

  • PDF

Establishment of Quantitative Analysis Method for Genetically Modified Maize Using a Reference Plasmid and Novel Primers

  • Moon, Gi-Seong;Shin, Weon-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.274-279
    • /
    • 2012
  • For the quantitative analysis of genetically modified (GM) maize in processed foods, primer sets and probes based on the 35S promoter (p35S), nopaline synthase terminator (tNOS), p35S-hsp70 intron, and zSSIIb gene encoding starch synthase II for intrinsic control were designed. Polymerase chain reaction (PCR) products (80~101 bp) were specifically amplified and the primer sets targeting the smaller regions (80 or 81 bp) were more sensitive than those targeting the larger regions (94 or 101 bp). Particularly, the primer set 35F1-R1 for p35S targeting 81 bp of sequence was even more sensitive than that targeting 101 bp of sequence by a 3-log scale. The target DNA fragments were also specifically amplified from all GM labeled food samples except for one item we tested when 35F1-R1 primer set was applied. A reference plasmid pGMmaize (3 kb) including the smaller PCR products for p35S, tNOS, p35S-hsp70 intron, and the zSSIIb gene was constructed for real-time PCR (RT-PCR). The linearity of standard curves was confirmed by using diluents ranging from $2{\times}10^1{\sim}10^5$ copies of pGMmaize and the $R^2$ values ranged from 0.999~1.000. In the RT-PCR, the detection limit using the novel primer/probe sets was 5 pg of genomic DNA from MON810 line indicating that the primer sets targeting the smaller regions (80 or 81 bp) could be used for highly sensitive detection of foreign DNA fragments from GM maize in processed foods.

Comprehensive analysis of AHL homologous genes encoding AT-hook motif nuclear localized protein in rice

  • Kim, Ho-Bang;Oh, Chang-Jae;Park, Yung-Chul;Lee, Yi;Choe, Sung-Hwa;An, Chung-Sun;Choi, Sang-Bong
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.680-685
    • /
    • 2011
  • The AT-hook motif is a small DNA-binding protein motif that has been found in the high mobility group of non-histone chromosomal proteins. The Arabidopsis genome contains 29 genes encoding the AT-hook motif DNA-binding protein (AHL). Recent studies of Arabidopsis genes (AtAHLs) have revealed that they might play diverse functional roles during plant growth and development. In this report, we mined 20 AHL genes (OsAHLs) from the rice genome database using AtAHL genes as queries and characterized their molecular features. A phylogenetic tree revealed that OsAHL proteins can be classified into 2 evolutionary clades. Tissue expression pattern analysis revealed that all of the OsAHL genes might be functionally expressed genes with 3 distinct expression patterns. Nuclear localization analysis using transgenic Arabidopsis showed that several OsAHL proteins are exclusively localized in the nucleus, indicating that they may act as architectural transcription factors to regulate expression of their target genes during plant growth and development.

Transposable Genetic Elements, the Mechanisms of Transposition, and Their Uses in Genetic Studies (게놈 내 전이성 인자와 그 이동기구 및 이용)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.241-260
    • /
    • 1995
  • Transposons, present in the genomes of all living organisms, are genetic element that can change positions, or transpose, within the genome. Most genomes contain several kinds of transposable elements and the molecular details of the mechanisms by which these transposons move have recently been uncovered in many families of transposable elements. Transposition is brought about by an enzyme known as transposaese encoded by the autonomous transposon itself, but, in the unautonomous transposon lacking the gene encoding the transposase, movement occurs only at the presence of the enzyme encoded by the autonomous one. There are two types of transposition events, conservative and replicative transposition. In the former the transposon moves without replication, both strands of the DNA moving together from one place to the other while in the latter the transposition frequently involves DNA replication, so one copy of transposon remains at its original site as another copy insole to a new site. The insertion of transposon into a gene can prevent it expression whereas excision from the gene may restore the ability of the gene to be expressed. There are marked similarities between transposons and certain viruses having single stranded Plus (+) RNA genomes. Retrotransposons, which differ from the ordinary transposons in that they transpose via an RNA-intermediate, behave much like retroviruses and have a structure of integrated retrovial DNA when they are inserted to a new target site. An insertional mutagenesis called transposon-tagging is now being used in a number of plant species to isolate genes involved in developmental and metabolic processes which have been proven difficult to approach by the traditional methods. Attempts to device a transposon-tagging system based on the maize Ac for use in heterologous species have been made by many research workers.

  • PDF

Microarray Probe Design with Multiobjective Evolutionary Algorithm (다중목적함수 진화 알고리즘을 이용한 마이크로어레이 프로브 디자인)

  • Lee, In-Hee;Shin, Soo-Yong;Cho, Young-Min;Yang, Kyung-Ae;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.501-511
    • /
    • 2008
  • Probe design is one of the essential tasks in successful DNA microarray experiments. The requirements for probes vary as the purpose or type of microarray experiments. In general, most previous works use the simple filtering approach with the fixed threshold value for each requirement. Here, we formulate the probe design as a multiobjective optimization problem with the two objectives and solve it using ${\epsilon}$-multiobjective evolutionary algorithm. The suggested approach was applied in designing probes for 19 types of Human Papillomavirus and 52 genes in Arabidopsis Calmodulin multigene family and successfully produced more target specific probes compared to well known probe design tools such as OligoArray and OligoWiz.