• Title/Summary/Keyword: Tank model

Search Result 1,309, Processing Time 0.04 seconds

Tank Model using Kalman Filter for Sediment Yield (유사량산정을 위한 Kalman filter를 이용한 탱크모델)

  • Lee, Yeong-Hwa
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1319-1324
    • /
    • 2007
  • A tank model in conjunction with Kalman filter is developed for prediction of sediment yield from an upland watershed in Northwestern Mississippi. The state vector of the system model represents the parameters of the tank model. The initial values of the state vector were estimated by trial and error. The sediment yield of each tank is computed by multiplying the total sediment yield by the sediment yield coefficient. The sediment concentration of the first tank is computed from its storage and the sediment concentration distribution(SCD); the sediment concentration of the next lower tank is obtained by its storage and the sediment infiltration of the upper tank; and so on. The sediment yield computed by the tank model using Kalman filter was in good agreement with the observed sediment yield and was more accurate than the sediment yield computed by the tank model.

Evaluation of the Tank Model Optimized Parameter for Watershed Modeling (유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가)

  • Kim, Kye Ung;Song, Jung Hun;Ahn, Jihyun;Park, Jihoon;Jun, Sang Min;Song, Inhong;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

Comparison of Sediment Yield by IUSG and Tank Model in River Basin (하천유역의 유사량의 비교연구)

  • Lee, Yeong-Hwa
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • In this study a sediment yield is compared by IUSG, IUSG with Kalman filter, tank model and tank model with Kalman filter separately. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. In the IUSG with Kalman filter, the state vector of the watershed sediment yield system is constituted by the IUSG. The initial values of the state vector are assumed as the average of the IUSG values and the initial sediment yield estimated from the average IUSG. A tank model consisting of three tanks was developed for prediction of sediment yield. The sediment yield of each tank was computed by multiplying the total sediment yield by the sediment yield coefficients; the yield was obtained by the product of the runoff of each tank and the sediment concentration in the tank. A tank model with Kalman filter is developed for prediction of sediment yield. The state vector of the system model represents the parameters of the tank model. The initial values of the state vector were estimated by trial and error.

Development of Tank Simulation Model (전차 시뮬레이션 모델 개발)

  • 최상영;김의환
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.125-136
    • /
    • 2002
  • This paper is aimed to develop Tank Simulation Model. The model simulates Tank-to-Tank engagement and Tank-to-Helicopter engagement by considering Korean battlefield environment. The simulated entities are command tanks, fight tanks, scout helicopters, attack helicopters, anti-tank guided missiles, and decoys. In this paper, we explain the model operational concept, model development and finally we will show some illustrative examples.

Development of Combination Runoff Model Applied by Genetic Algorithm (유전자 알고리즘을 적용한 혼합유출모형의 개발)

  • Shim, Seok-Ku;Koo, Bo-Young;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.201-212
    • /
    • 2009
  • The Tank model and the PRMS(Precipitation Runoff Modeling-modular System) model have been adopted to simulate runoff data from 1981 to 2001 year in the Seomgin-dam basin. However, the simulated runoff by each single model showed some deviations compared with the observed runoff, respectively. In this study a genetic algorithm combination runoff model has been proposed to minimize deviations between simulated runoff and observed runoff that should yield from single model such as Tank model or PRMS model. The proposed combination runoff model combining the simulated respective output of the Tank model and the PRMS model is to produce the optimum combination ratio of each single model applying to the genetic algorithm which may yield the minimum deviations between simulated runoff and observed one. The proposed combination runoff model has been applied to the Seomgin-dam basin. It has also been shown that the combination model by introducing optimal combination ratio should yield less deviations than single model such as the Tank model or the PRMS model.

The Applicability Study of SYMHYD and TANK Model Using Different Type of Objective Functions and Optimization Methods (다양한 목적 함수와 최적화 방법을 달리한 SIMHYD와TANK 모형의 적용성 연구)

  • Sung, Yun-Kyung;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.121-131
    • /
    • 2004
  • SIMHYD and TANK model are used to predict time series of daily rainfall-runoff of Soyang Dam and Youngcheon Dam watershed. The performances of SIMHYD model with 7 parameters and TANK model with17 parameters are compared. Three optimization methods (Genetic algorithm, Pattern search multi-start and Shuffled Complex Evolution algorithm) were applied to study-areas with 3 different types of objective functions. Efficiency of TANK model is higher than that of SIMHYD. Among different types of objective function, Nash-sutcliffe coefficient is found to be the most appropriateobjective function to evaluate applicability of model.

Sloshing Analysis of a Simple Tank using Fluid-structure Interface Method (유체-구조 연성 방법에 의한 단순 탱크 슬로싱 해석)

  • Kang, Sung-Jong;Seo, Hong-Jae;Kim, Byung-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Fuel tank sloshing noise of vehicle is caused by flow impact on the tank wall during sudden braking, and the sloshing vibration of tank wall is a coupled phenomenon of the fuel inside tank and tank wall structure. Therefore, Fluid-Structure Interface(FSI) analysis technology should be adopted to predict accurately the sloshing vibration. In this study, FSI approach was employed to analyze sloshing phenomenon for a simple tank model with velocity change of the actual vehicle test. First, the simulated results for rigid tank model were compared with those for deformable tank model. Next, influence of baffle location and shape of baffle holes on the acceleration magnitude and the maximum stress of tank wall was investigated. In addition, sloshing analysis for tank with another baffle type was carried out.

Development of TANK_GS Model to Consider the Interaction between Surface Water and Groundwater (지표수-지하수 상호흐름을 고려한 TANK_GS 모형의 개발)

  • Lee, Woo-Seok;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.893-909
    • /
    • 2010
  • The purpose of this study is to consider the interaction between surface water and groundwater in basin scale by developing TANK_GS model. The soil moisture structure of tank model with 3 tanks is improved to simulate the appropriate stream-aquifer interactions. Maximum likelihood method is applied to calibrate parameters with variance functions to deal with heteroscedasticity of residuals. The parameters of improved TANK_GS model and variance function are simultaneously estimated by Simulated Annealing method, a global optimization technique. The results of TANK-GE are compared to those of the SWMM-GE model which had been developed to consider the stream-aquifer interactions. The new TANK_GS model and SWMM-GE model are applied to Gapcheon basin, which belongs to Geum River basin. TANK_GS model showed better model performance compared to the original TANK model and characterized the relationship of stream-aquifer interactions as satisfactorily as the SWMM-GE model. The sustainable groundwater yield can be estimated for the regional water resources planning using the TANK_GS model

Development and Verifying of Calculation Method of Standard Rainfall on Warning and Evacuation for Forest Soil Sediment Disaster in Mountainous Area by Using Tank Model (Tank Model을 이용한 산지토사재해 경계피난 기준우량 산정법 개발 및 검토)

  • Lee, Chang-Woo;Youn, Ho Joong;Woo, Choong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.272-278
    • /
    • 2009
  • This study was conducted to develope calculation method of standard rainfall, which was used for predicting the outbreaking time of disaster by using Tank model, on warning and evacuation for soil sediment disaster. We investigate adeption possibility of developed method through comparing storage function method with Tank model. We calculated storage amount rainfall by storage function method and Tank model with 36 hillslope failures which have record on outbreaking time of disaster. The result in case of Sedimentary (quarternary period) showed that the difference of outbreaking time was 1.6 hour in case of tank model, but 3.2 hour in case of storage function method. In addition, the deviation of the peak storage were 7% in case of tank model, but 63% in case of storage function method. Total evacuation period was analyzed by using observed 5 years (1993-1997) rainfall data as well as each standard rainfalls which were determinated by two methods. The result showed that evacuation time by storage function method was about twice as many as that by tank model. Therefore, we concluded that calculation by tank model for predicting the outbreaking time of disaster was more useful and accurate than storage function method.