• Title/Summary/Keyword: Tank filling

Search Result 111, Processing Time 0.031 seconds

A Study on the Strength Safety of an Aluminium Liner for a Hydrogen Fuel Storage Tank (수소연료 저장탱크용 알루미늄 라이너의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • In this study, the strength safety for 110 liter hydrogen fuel storage tank with 70MPa filling pressure has been analyzed using a FEM technique. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 and carbon fiber wound composite layers of T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray has been investigated based on the criterion of a strength safety of US DOT-CFFC and Korean Standard. The FEM computed results on the strength safety of 70MPa hydrogen gas tank showed that the hydrogen fuel storage tank in which is fabricated by T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray is safe because those two carbon fibers have very similar material properties. But, the composite storage tank with a filling pressure of 70MPa in which is fabricated by T700-12K of Toray may not guaranty the strength safety, and thus this study recommends a composite hydrogen fuel tank under 60MPa.

Technology Trend of Propellant Tank Vent Relief Valve for Launch Vehicle (발사체용 추진제 탱크 벤트릴리프 밸브 기술 동향)

  • Koh, Hyeon-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.130-138
    • /
    • 2011
  • A vent relief valve performs as a safety valve, which ensures ventilation of propellant tank during filling and protection from tank overpressure after filling. Because of the reliability and cost saving, the virtually same vent relief valve has been used on all US cryogenic liquid fueled launch vehicles. Some modification to the valve has been applied to satisfy the various mission requirements of launch vehicles. This paper reviews the main technology trends of the vent relief valve applied to the propellant feed system for launch vehicle with respect to design and manufacture. This paper also introduces the operating technology of vent relief valve applied for launch vehicles of advanced countries in space development.

  • PDF

Analysis on the Filling Mode of Propellant Supply System for the Korea Space Launch Vehicle (한국형발사체 추진제공급시스템 충전모드 해석)

  • Lee, Jaejun;Park, Sangmin;Kang, Sunil;Oh, Hwayoung;Jung, Eun Sang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.50-58
    • /
    • 2016
  • Korean Space Launch Vehicle (KSLV-II) Propellant Supply System charges liquid oxygen and kerosene to each propellant tank for the stages. To charge the launch vehicle propellant tank safety, the propellant charge flow rates and scenarios should be defined. First, the Propellant Supply System was modeled with 1D flow analysis program. The control valve capacity and orifice size were calculated by performing the 1D steady state simulation. Second, the 1D transient simulation was performed by using the steady state simulation results. As propellants were being charged at the each tank, the increased tank liquid level decreases the charge flow rate. Consequently, the proposed supply system satisfies the required design charging conditions.

A Study on the Behavior of Prestressed Concrete Storage Tanks under Cryogenic Conditions (프리스트레스트 콘크리트 저장 탱크의 저온 조건에서의 거동 연구)

  • 양인환;고재일;김우진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.363-366
    • /
    • 1999
  • This paper describes the behavior of prestressed concrete storage tanks under cryogenic temperatures by thermal stress analysis. In concrete tanks to store up LNG, a thermal shock can occur over a global area resulting from the sudden filling of the outer tank with cryogenic storage contents. Analysis results show that internal surface of concrete tank is cooled down rapidly. Tank is subjected mostly to thermal constraint moment due to temperature gradient across its section. Constraint moment may cause tensile stresses beyond tensile strength in the wall. Problems related with concrete cracking due to temperature gradient have been considered.

  • PDF

Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank (사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

A Study on the Quantitative Analysis and Estimation for Surround Building caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG충전소에서 증기운폭발이 주변건물에 미치는 영향의 정량적 해석 및 평가에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • This paper is estimation of structure damage caused by Explosion in LPG(Liquefied Petroleum Gas) filling station. As we estimate the influence of damage which occur at gas storage tank in filling station. We can utilize the elementary data of safety distance. In this study, the influence of over-pressure caused by VCE(Vapor Cloud Explosion) in filling station was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures of max 265 meters away and to glass bursting of 1150 meters away was nearly zero in open space explosion.

Development of an Automatic Cap Opening And Closing Device for Unmanned Chemical Manufacturing Processes (화학제조공정의 무인화를 위한 자동 캡 개폐장치 개발)

  • Jun-Sik Lee;Oh-Seong Kwon;Jun-Ho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2024
  • Automatic production systems are constantly advancing technologies to improve productivity and safety. Specifically, liquid filling machines are primarily utilized to package products into drums after manufacturing process in the hazardous chemical industry. Most existing filling machines allow the operator to open the drum cap and inject the product directly or semi-automation. In this study, we have developed a cap opening and closing mechanism onto the existing drum filling machine, enabling automatic and safe cap manipulation while filling the product in the IBC tank. By applying the appropriate torque value through numerical analysis, we confirmed that the system worked without any problems during the process of opening and closing the cap. Therefore, it is expected that the developed machine will give more production and reduce human efforts without risk in the chemical packaging industry.

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.

A study on formation of slurry ice by the reversing flow (역전 유동층에 의한 슬러리아이스 생성에 관한 연구)

  • Oh, C.;Mun, S.B.;Choi, Y.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by putting ball into test section to disturb ice adhesion. And at this experiment it used ethylene glycol-water solution and the concentration is 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank. brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter data logger for fluid temperature measuring and a vertical circular tube with two copper tubes as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 0.07 to 0.13m/s and ball diameter is 10mm, 15mm. Also ball filling rate is 33%, 50%.

An experimental study on formation of slurry ice in reversing flow (역전 유동층 내에서의 슬러리아이스 생성에 관한 실험적 연구)

  • Choi, Young-Gyu;Yoon, Seok-Hun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.49-50
    • /
    • 2006
  • This study experimented to observe an influence of experimental conditions on production characteristics of slurry ice by putting ball into test section to disturb ice adhesion. And at this experiment it used ethylene glycol-water solution and the concentration is 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank, brine tank. pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring and a vertical circular tube with two copper tubes as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 0.07 to 0.13m/s and ball diameter is 10mm, 15mm. Also ball filling rate is 33%, 50%.

  • PDF