• Title/Summary/Keyword: Tank car

Search Result 49, Processing Time 0.025 seconds

An Analysis of Engine Cooling using a Three-dimensional Radiator Model (3차원 방열기 모델을 이용한 엔진냉각 해석)

  • 이영림
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF

Improvement of Passenger Airbag Based on the Injury Assessment of the 5th Percentile Female Dummy (작은 체형의 여성 승객을 고려한 조수석 에어백의 설계 개선)

  • Kwon, Yul;Kim, Kwon-Hee;Son, Chang-Kyu;Kim, Hyung-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • Automobile airbag deployment process has been studied with MADYMO software. Based on the FMVSS208 and USNCAP(United States New Car Assessment Program) regulations, four parameters were chosen for the design improvement with reference to the 5th percentile female passenger dummy: time to fire, vent hole size, tether length and tank test pressure of inflator. Sensitivity analyses based on orthogonal arrays show that enhanced protection of small females can be achieved with improved USNCAP rating within the boundary of FMVSS 208.

Application of APM WinMachine for strength calculations o Demichovo machine-building plant.

  • Vladimir Shelofast;Pyoun, Young-Shik;Alexandr Kvasnikov;Yeo, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.104-106
    • /
    • 2001
  • This paper presents the usage of software package APM WinMachine for design of train car elements. APM software uses fur maximization of design productivity and efficiency in designing and evaluation machine elements and systems and CAD modeling. In process of machine designing needs make strength calculations of machine parts with complecated design. Will the help of APM software strength calculations can be done quickly. On the Demichovo machine-building plant with the use of APM software were made quickly and effectively strength calculations of the cradle of the suspension of air-conditioner of car train and the mounting brackets of a tank of train toilet.

Experimental Study on the Fatigue Strength of a Running Equipment in Railway Applications (철도적용에서 구동장치의 피로강도에 관한 시험적 연구)

  • Yoon, Sung Cheol;Kim, Jeongguk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.739-744
    • /
    • 2016
  • The truck that is used as running equipment for tank freight car support is a core structural part that supports the load of the car body and significantly influences the safety of freights and vehicles, as well as their running performance. Running equipment is composed of truck frames, wheels and wheel axles, independent suspensions, and brakes. Among these components, the truck frame supporting the load of the vehicles and freights may be the most important component. This study was carried out to analyze the structure of truck frames and to determine whether they are safe when the maximum vertical load, braking part load, and the front and rear load are applied to truck frames. This was achieved by subjecting the truck frames to stress tests and then measuring the stress on each part. The results of the stress tests showed that truck frames have a safe vehicle load design.

An Implementation for Oil Mixing Preventive Device and Time Indicator (혼유 주유 방지 및 세차 대기 표시기 구현)

  • Kim, Seong-Jin;Sunwoo, Yong-Woon;Lee, Sung-Hyun;Lee, Jung-Woong;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.191-198
    • /
    • 2019
  • In this paper, we implemented the prevention of oil mixing accidents caused by stereotypes or novice drivers at gas stations. After the CO gas concentration of the fuel tank is measured using the MQ-9 gas sensor, the gasoline and diesel are distinguished from each other. This is decided by using a servomotor to lock of the fueling nozzle to prevent the mixing of oil. In addition, car washes time display is implemented by using infrared sensor to save the time and to provide convenience for customers who want to wash car after fueling.

Damage Visualization of Filament Wound Composite Hydrogen Fuel Tank Using Ultrasonic Propagation Imager (초음파전파영상화 시스템을 이용한 필라멘트 와인딩 복합재 수소 연료 탱크의 손상 가시화)

  • Lee, Jung-Ryul;Jeong, Hyomi;Chung, Truong Thanh;Shin, Hejin;Park, Jaeyoon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.143-147
    • /
    • 2015
  • This paper proposes laser ultrasonic technique for the impact damage inspection of hydrogen fuel tank and proves that the impact damage can be visualized using an ultrasonic wave propagation imager with an easy detachable sensor head as an impact damage inspection tool for hydrogen fuel tanks. Also the performances of the proposed ultrasonic propagation imager support it can be implemented in real-world technology when the hydrogen car becomes popular.

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).

Analysis of bulk freight transportation (벌크화물 수송실태 분석)

  • Lee, Suk;Kim, Young-Joo;Kim, Kyoung-Tae;Kwon, Yong-Jang;Kim, Seung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3278-3288
    • /
    • 2011
  • Bulk freight is transported by a freight car, ship and tank lorry without packaging in a state of particles or powders. In korea, the main bulk freight include oil, grain, coal, cement, iron ore and these are occupied nearly 30% of the volume of gross domestic freight transportation. Therefore it is in important to transport efficient bulk freight transport system for the improvement of national distribution competitive as raw material for industry. Generally environment-friendly transfer modes such as railway and sea transport play an important role in bulk freight transport due to the mass transfer characteristics of bulk freight. This study is carried out for examining the problem of oil, grain, coal, cement, ore transportation through analyzing distribution flow of items and understanding characters of transfer modes.

  • PDF

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF