• Title/Summary/Keyword: Tank Container

Search Result 92, Processing Time 0.024 seconds

Impact Assessment of the Damage by a Pool Fire in Yard Storage Facilities of a Container Terminal (컨테이너 터미널 옥외저장소에서의 액면화재에 대한 피해영향 평가)

  • Hwang, Man Woong;Lee, Ik Mo;Hwang, Yong Woo;Chun, Young Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.33-42
    • /
    • 2016
  • Domestic harbor yard storage facilities are a place specifically located in a container terminal for import and export of packaged dangerous goods, and due to the recent relaxed criteria for the secured open area, concerns for the extended damage upon accidents are increasing. In this study, the impact of damages by radiant heat was analyzed through a simulation of a pool fire caused by the leakage of flammable liquids from a tank container. As a result, it was analyzed that the distance of radiant heat according to threshold damage levels was beyond the current criteria of the secured open area, and the structural damage of adjacent containers could happen within a very short time if they were exposed to the early pool fire continuously. It is considered that this study will be helpful in preparing the proper criteria for the secured open area between yard storage facilities in a container terminal.

Strength Safety Evaluation of Composite Pressure Container for Hydrogen Fuel Tanks (수소연료탱크용 복합소재 압력용기에 관한 강도안전성 평가연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • This paper presents a strength safety evaluation of composite pressure container for hydrogen fuel tanks with a storage capacity of 104 liter and 70MPa pressure. The carbon fiber composite container is manufactured by an aluminum liner of Al6061-T6 and composite multi-layers of hoop winding layer in circumferential direction, $12^{\circ}C$ inclined winding layer and $70^{\circ}C$winding layer in helical direction respectively. The FEM results on the strength safety of composite fuel tanks were evaluated with a criterion of design safety of US DOT-CFFC and KS B ISO 11119-2 codes. The FEM computed results indicate that the proposed design model of 104 liter composite container is safe based on two strength safety codes. But, the computed results of carbon fiber fuel tanks based on US DOT-CFFC code is safer compared with that of KS B ISO 11119-2. Thus the hydrogen gas pressure container of 70MPa may be evaluated and designed by US DOT-CFFC code for more strength safety.

A Study on the Drinking Water Quality for Primary Lunch School in Seoul (서울지역 급식 국민학교의 음용수 수질에 관한 연구)

  • 이원묘;이용옥;방형애
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.1
    • /
    • pp.7-20
    • /
    • 1995
  • The aims of this study are to enhance the students' knowledge of the drinking water and its reliability by investigating drinking water situation on the drinking water. The results are as following 1. Status and drinking behavior about school drinking water (1) 97.82% of the schools are using the tap water as the resource of drinking water. (2) 46 schools are in possession of water tank and 18 schools of them are using the water tank as the resource of drinking water. The clearing and sanitization of the tank are carried out once in a year with hypochloronatrium by the low-level officials. (3) 51.28% of the schools are providing the students with drinking water and 75% of them with boiled water. The drinking water supply managers are low-level officials, nurse teachers, and dietitian. 2. Analysis of the drinking water quality (1) Most of the drinking water provided by the school are tap water 35.8%, barely tea 5.85%, filtered water 6.3%, ground water 1.1% and all turned out to be suitable for drinking. (2) The drinking water carried from home turned out to be unsuitable for drinking except pH criterion, especially the test of APC(Aerobic Plate Count) and Coliform group showed worse degree. These results were caused by the hygiene problem and maltreatment in water container.

  • PDF

Study on the Effect of Density Ratio of Gas and Liquid in Sloshing Experiment (기체-액체 밀도차에 대한 슬로싱 충격압력의 실험적 고찰)

  • Ahn, Yangjun;Kim, Sang-Yeob;Kim, Kyong-Hwan;Lee, Sang-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • This paper presents the results of sloshing experiments having different fluids in model tanks with various density ratios. The experimental model consisting water and air at ambient, which has been commonly used, is not consistent in density ratio with that of an actual LNG cargo tank. Therefore, an advanced experimental scheme is developed to consider the same density ratio of LNG and NG by using a mixed gas of sulfur hexafluoride ($SF_6$) and nitrogen ($N_2$). For experimental observation, a two-dimensional model tank of 1/40 scale and a three-dimensional model tank of 1/50 scale have been manufactured and tested at various conditions. Two different fillings with various excitation frequencies under regular motions have been considered for the two-dimensional model tank, and three different filling levels under irregular motions have been imposed for the three-dimensional model tank. The density ratio between gas and liquid varies from the ratio of the ambient air and water to that of the actual LNG cargo container, and the different composition of gas is used for this variation. Based on the present experimental results, it is found that the decrease of sloshing pressure is predicted when the density ratio increases.

A Study of Thermo-structural Analysis and Fatigue Analysis for Independent Type-B LNG Fuel Tank (독립형 B타입 LNG 연료 탱크의 열-구조 연성해석 및 피로 해석에 관한 연구)

  • Kim, Tae-Wook;Kim, Jong-Min;Kim, Jong-Hwan;Lee, Jeong-Ho;Park, Seong-Bo;Lee, Sung-Min;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.410-419
    • /
    • 2016
  • With the aim of reducing greenhouse gas emissions by 20 percent by 2020 and by 50 percent by 2050 from their 2005 level, International Maritime Organization (IMO) regulated the emissions of SOx and NOx by setting the emission control area in 2012. Since these environmental regulations have been reinforced, demands for the LNG fuel ships are expected to increase dramatically. Accordingly, the worldwide shipbuilding companies spur the development of the LNG fueled ships. Therefore, it is essential to carry out the research on the development of LNG fuel tank, which is one of the important components of the LNG fuel supply system. In this study, the deliberate finite element analysis of type-B LNG fuel tank for 10,000 TEU containership was carried out to evaluate structural safety and provide the process for analyzing stress levels and evaluating fatigue life of target structural. In particular, thermo-structural analysis and fatigue analysis were carried out using the databases on materials and structures of LNG fuel tank.

Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter (배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과)

  • 조진래;김민정;이상영;허진욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

Performance Improvement Study of Propeller Propulsion Efficiency and Cavitation for the 8800TEU Class Container (8800TEU급 컨테이너선 프로펠러 추진효율 및 캐비테이션 성능향상 연구)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha;Ahn, Hae-Seong;Jung, Young-Jun;Yoon, Ji-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.453-460
    • /
    • 2017
  • In order to investigate propulsion efficiency and cavitation characteristics for expanded area ratio variation of the 8800TEU class container propeller, a series of performance tests were conducted at Large Cavitation Tunnel (LCT) and Towing Tank (TT) in KRISO. The cavitation test of the existing propellers (KP1029 & KP1030) was conducted using FRP model ship in LCT. On the basis of LCT test results, it was required to design propeller with better propulsion efficiency and cavitation performance. Two propellers (KP1171 & KP1172) with decreased expanded area ratio were designed on the basis of KP1029 propeller. The new design propellers showed higher efficiency than KP1029 and reasonable cavitation performance. In the future, they will be applied as the standard propeller for the propeller design of the large container ship. Through the performance test and prediction results for the new design propellers, it is thought that high-load propeller with better propulsion efficiency and cavitation performance will be developed constantly.

3D printing of multiple container models and their trajectory tests in calm water

  • Li, Yi;Yu, Hanqi;Smith, Damon;Khonsari, M.M.;Thiel, Ryan;Morrissey, George;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.225-245
    • /
    • 2022
  • More and more shipping containers are falling into the sea due to bad weather. Containers lost at sea negatively affect the shipping line, the trader and the consumer, and the environment. The question of locating and recovering dropped containers is a challenging engineering problem. Model-testing of small-scaled container models is proposed as an efficient way to investigate their falling trajectories to salvage them. In this study, we first build a standard 20-ft container model in SOLIDWORKS. Then, a three-dimensional (3D) geometric model in the STL (Standard Tessellation Language) format is exported to a Stratasys F170 Fused Deposition Modeling (FDM) printer. In total, six models were made of acrylonitrile styrene acrylate (ASA) and printed for the purpose of testing. They represent three different loading conditions with different densities and center of gravity (COG). Two samples for each condition were tested. The physical models were dropped into the towing tank of University of New Orleans (UNO). From the experimental tests, it is found that the impact of the initial position after sinking can cause a certain initial rolling velocity, which may have a great impact on the lateral displacement, and subsequently affect the final landing position. This series of model tests not only provide experimental data for the study of the trajectory of box-shape objects but also provide a valuable reference for maritime salvage operations and for the pipeline layout design.

Review about Thermal Stability Reinforcing Method of the Concrete Sidewall of the LNG Storage Tank Using Sprayed PUF (스프레이 PUF를 이용한 LNG 저장탱크 외조 벽체의 열적 안정성 강화 방법에 대한 고찰)

  • Lee, Yeongbeom;Choe, Keonhyeong;Yoon, Ihnsoo;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • LNG storage tank is a facility to store liquefied natural gas (LNG) and its safety and stability to be greatly needed. When there is a LNG leakage in case of primary container problem, a special facility such as a bund wall should be constructed to store the leaked LNG. But this method makes the land usage inefficient and construction price high. So nowadays the full containment type LNG storage tank is selected instead of constructing a bund wall. In the full containment type tank, the concrete sidewall has the ability to store LNG temporarily. There are largely two methods to give the concrete sidewall the ability. In a method, rebar should be used when constructing the side wall of the LNG storage tank. In the other method, the protecting material such as sprayed polyurethane foam should be applied on the inner surface of the concrete sidewall. Sprayed PUF keeps the temperature of the sidewall above the specified temperature during the specified periods. Recently the thermal stability reinforcing method using sprayed polyurethane foam has been applied to all LNG storage tank built in Korea.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.