• 제목/요약/키워드: Tangor (Citrus unshiu ${\times}$ C. sinensis)

검색결과 1건 처리시간 0.014초

부지화 잎의 화학성분에 기반한 질소결핍 여부 구분 머신러닝 모델 개발 (Development of Machine Learning Models Classifying Nitrogen Deficiency Based on Leaf Chemical Properties in Shiranuhi (Citrus unshiu × C. sinensis))

  • 박원표;허성
    • 한국자원식물학회지
    • /
    • 제35권2호
    • /
    • pp.192-200
    • /
    • 2022
  • 본 연구에서는 부지화 잎의 무기양분 농도 측정 결과를 바탕으로 질소를 제외한 다른 무기양분의 함량을 통해서 잎의 질소 결핍 여부를 구분하는 머신러닝 모델을 개발하였다. 그러기 위해서 부지화의 질소결핍구와 대조구의 잎 샘플을 분석한 36개의 데이터를 부트스트랩핑 방법을 통해서 학습용 데이터셋 1,000 여 개로 증량시켰다. 이를 이용해 학습한 각 모델을 테스트한 결과, gradient boosting 모델이 가장 우수한 분류성능을 보여주었다. 본 모델을 이용해 질소함량을 직접적으로 분석할 수 없는 경우, 잎의 무기성분 함량에 기반하여 질소결핍 가능성 여부를 판단해 질소가 부족한 부지화 나무를 분별하고, 정확한 질소함량을 측정하게 유도하여 그에 기초한 적정 질소비료 시비를 가능케 하고자 하였다.