• Title/Summary/Keyword: Tangible Interaction Design

Search Result 63, Processing Time 0.02 seconds

Industrialization issues of VR-Tangible Interaction Contents and its application case study on Autism Remedy system (VR-Tangible Interaction을 활용한 산업화 콘텐츠 개발과 발달장애 치료 프로그램 개발에의 적용 사례 연구)

  • Lee Hyun-Jhin
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.53-61
    • /
    • 2005
  • This study reviewed research and design directions on VR-Tangible interaction and explored market-driven approach of VR-tangible interaction applications. As a case study, we studied autism remedy system based on VR-tangible interaction design. Literature and field study has done on autism and its remedy methodologies. Based on observation process about patients, therapists, and remedy programs, interaction factors for autism remedy are found and then design strategy, system configuration, and remedy contents scenarios are set up to solve time and resource problems, presence problems, and efficiency issues of remedy results.

  • PDF

VR Contents Design using Tangible Interaction (Tangible Interaction을 활용한 가상현실 콘텐츠 디자인에 관한 연구)

  • 이현진
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.463-470
    • /
    • 2004
  • This paper studied tangible interaction design of VR platform and its applications that are economic In development process and cost, flexible by contents and installation conditions, and that has business potential for consumer market. The design solution uses video based virtual world and tangible interaction by motion tracking. Our platform enables a user to monitor their action and to collaborate with other users of remote place within attractive interaction feedback. We developed two design applications, Glass Xylophone 2003 and VR Class, in our platform. Glass Xylophone 2003 provides interactive music performance and helps self practice of glass xylophone. VR Class gives more serious distance learning experience with tutoring and group collaboration. They are presented in public exhibitions and tested by exhibition visitors. They showed application potential of this design solution in interactive game, distance learning, and entertainment field.

  • PDF

AR-based Tangible Interaction Using a Finger Fixture for Digital Handheld Products (손가락 고정구를 이용한 휴대용 전자제품의 증강현실기반 감각형 상호작용)

  • Park, Hyung-Jun;Moon, Hee-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • In this paper, we propose an AR-based tangible interaction using a finger fixture for virtual evaluation of digital handheld products. To realize tangible interaction between a user and a product in a computer-vision based AR environment, we uses two types of tangible objects: a product-type object and a finger fixture. The product-type object is used to acquire the position and orientation of the product, and the finger fixture is used to recognize the position of a finger tip. The two objects are fabricated by RP technology and AR markers are attached to them. The finger fixture is designed to satisfy various requirements with an ultimate goal that the user holding the finger fixture in his or her index finger can create HMI events by touching specified regions (buttons or sliders) of the product-type object with the finger tip. By assessing the accuracy of the proposed interaction, we have found that it can be applied to a wide variety of digital handheld products whose button size is not less than 6 mm. After performing the design evaluation of several handheld products using the proposed AR-based tangible interaction, we received highly encouraging feedback from users since the proposed interaction is intuitive and tangible enough to provide a feeling like manipulating products with human hands.

Resolving Hand Region Occlusion in Tangible Augmented Reality Envrionments (감각형 증강현실 환경에서의 손 가림 현상 해결 방안)

  • Moon, Hee-Cheol;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.277-284
    • /
    • 2011
  • In tangible augmented reality (AR) environments for virtual prototyping, the user interacts with virtual products by manipulating tangible objects with his or her hands, but the user often encounter awkward situations in which his or her hands are occluded by augmented virtual objects, which reduces both immersion and ease of interaction. In this paper, we present how to resolve such hand region occlusion in order to enhance natural interaction and immersive visualization. In the AR environment considered, we use two types (product-type and pointer-type) of tangible objects for tangible user interaction with a virtual product of interest. Holding the tangible objects with his or her hands, the user can create input events by touching specified regions of the product-type tangible object with the pointer-type tangible object. We developed a method for resolving hand region occlusion frequently arising during such user interaction, It first detect hand region in a real image and refines the rendered image of the virtual object by subtracting the hand region from the rendered image, Then, it superimposes the refined image onto the real image to obtain an image in which the occlusion is resolved. Incorporated into tangible AR interaction for virtual prototyping of handheld products such as cellular phones and MP3 players, the method has been found by a preliminary user study that it is not only useful to improve natural interaction and immersive visualization of virtual products, but also helpful for making the users experience the products' shapes and functions better.

Design Evaluation of Portable Electronic Products Using AR-Based Interaction and Simulation (증강현실 기반 상호작용과 시뮬레이션을 이용한 휴대용 전자제품의 설계품평)

  • Park, Hyung-Jun;Moon, Hee-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • This paper presents a novel approach to design evaluation of portable consumer electronic (PCE) products using augmented reality (AR) based tangible interaction and functional behavior simulation. In the approach, the realistic visualization is acquired by overlaying the rendered image of a PCE product on the real world environment in real-time using computer vision based augmented reality. For tangible user interaction in an AR environment, the user creates input events by touching specified regions of the product-type tangible object with the pointer-type tangible object. For functional behavior simulation, we adopt state transition methodology to capture the functional behavior of the product into a markup language-based information model, and build a finite state machine (FSM) to controls the transition between states of the product based on the information model. The FSM is combined with AR-based tangible objects whose operation in the AR environment facilitates the realistic visualization and functional simulation of the product, and thus realizes faster product design and development. Based on the proposed approach, a product design evaluation system has been developed and applied for the design evaluation of various PCE products with highly encouraging feedbacks from users.