• 제목/요약/키워드: Tandem Solar Cell

검색결과 52건 처리시간 0.02초

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

다중 적층형 박막 실리콘 태양 전지의 터널 접합 특성 연구 (The Study of the Tunnel Recombination Junction Properties in Multi-Junction Thin Film Silicon Solar Cells)

  • 황선태;심현자;정진원;안세원;이헌민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • 박막 실리콘 태양 전지는 저가격화 및 대량생산, 대면적화에 유리하다는 장점을 가지고 있다. 단점으로 지적되는 낮은 효율을 극복하기 위해 광흡수층의 밴드갭이 서로 다른 두 개 이상의 박막을 적층하여, 넓은 파장 대역의 빛을 효과적으로 흡수함으로써 광변환 효율을 올리기 위한 많은 연구가 이루어지고 있다. 서로 다른 밴드갭의 광흡수층을 가진 p-i-n 구조를 다중 적층하여 고효율의 태양 전지를 제작하기 위해서는 n-도핑층과, p-도핑층 간에 전자와 정공이 빠르게 재결합할 수 있는 터널 접합(Tunnel Recombination Junction)의 형성이 필수적이며, 이때 광손실이 최소화되도록 해야한다. 만약 터널 접합이 적절하게 형성되지 않으면 결합되지 않은 전자와 정공이 도핑층 사이에 쌓이게 되고, 도핑층 사이의 저항 증가로 태양 전지의 광변환 효율은 크게 하락한다. 이번 연구에서는 터널 접합이 잘 이루어지게 하기 위한 n-도핑층 및 p-도핑층 박막의 특성과, 터널 접합의 특성에 따른 적층형 태양 전지의 광효율 변화를 확인하였다. 광흡수층 및 도핑층은 TCO($SnO_2:F$, Asahi) 유리 기판 위에 PECVD를 사용하여 p-i-n 구조로 RF Power 조건에서 증착되었고, ${\mu}c$-Si 광흡수층의 경우에는 VHF Power 조건에서 증착되었다. 광흡수층이 a-Si/${\mu}c$-Si의 구조를 가지는 이중 접합 태양 전지에서 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층 사이의 터널 접합 실험 결과 n-도핑층 및 p-도핑층의 결정화도와 도핑 농도를 조절하여 터널 접합의 저항을 최소화했고, 터널 접합 특성이 이중 접합 셀의 광효율 특성과 유사한 경향을 보임을 확인하였다. 광흡수층이 a-Si/a-SiGe/${\mu}c$-Si의 구조를 가지는 삼중 접합 태양 전지 실험의 경우 a-Si과 a-SiGe 광흡수층 사이에 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층/a-SiC p-도핑층의 구조를 적용하여 터널 접합을 형성하였으며, ${\mu}c$-Si p-도핑층의 두께 및 박막 특성을 개선하여 광손실이 최소화된 터널 접합을 구현하였고, 삼중 접합 태양 전지에 적용되었다.

  • PDF