• Title/Summary/Keyword: Tandem Differential Mobility Analyzer

Search Result 4, Processing Time 0.025 seconds

Particle path and performance evaluation of differential mobility analyzer (Differential Mobility Analyzer(DMA)내의 입자운동 및 특성 분석)

  • An, Gang-Ho;Kim, Nam-Hyo;Lee, Jong-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2005-2013
    • /
    • 1996
  • Particle paths and flow fields in a prototype differential mobility analyzer (DMA) were numerically analyzed solving Navier-Stokes equation, electric field equation and particle motion considering viscous drag force, Coulomb force and polarization force. Analytically predicted particle diameters for the prototype DMA are in good agreement with the measured particle diameters within $\pm$1%. And the analytically predicted particle diameters are also in good agreement with numerical results for the prototype DMA.

Investigation of the Optical and Cloud Forming Properties of Pollution, Biomass Burning, and Mineral Dust Aerosol

  • Lee Yong-Seop
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2006.04a
    • /
    • pp.55-56
    • /
    • 2006
  • This thesis describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this thesis, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based tandem differential mobility analyzer was used for the first time during this campaign to examine the size-resolved hygroscopic properties of particles having diameters between 40 and 586 nm. Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth are measured in College Station, TX to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted CCN concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients are calculated at a wavelength of 550 nm.

  • PDF

Formation and Hygroscopic Growth Properties of Ultrafine Particles in College Station, Texas, in 2003 (2003년 미국 텍사스 칼리지스테이션에서 관측된 초미세입자의 형성과 흡습 성장 특성)

  • Lee, Yong-Seob;Collins, Don R.
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.793-798
    • /
    • 2007
  • During May of 2003, smoke from fires in the Yucatan Peninsula was transported across the Gulf of Mexico and into Texas where it caused significant enhancement in measured aerosol concentrations and reduced visibility. During this event, the formation and growth of aerosol particles has been observed by a differential mobility analyzer (DMA) / tandem differential mobility analyzer (TDMA) system to characterize the size distribution and size-resolved hygroscopicity of the aerosol. The most number concentration is by the particles smaller than 100 nm, but the integrated number concentrations for over 100 nm increased due to the aerosol growth. Hygroscopic growth factor increase from 1.2 to 1.4 for 25, 50, and 100 nm particles during the nucleating period. This distribution and the aerosol properties derived from the TDMA data were used to calculate the growth rate. Particle growth rates were in the range 1-12 nm/hr.

The Influence of Aerosol Source Region on Size-resolved Hygroscopicity During the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) Campaign

  • Lee, Yong-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.9-18
    • /
    • 2006
  • Aerosol hygroscopic properties were measured by a tandem differential mobility analyzer (TDMA) system during the Aerosol Characterization Experiment (ACE)-Asia campaign from 31 March to 1 May 2001. Two high flow differential mobility analyzers (DMAs) were used to maximize the count rate on board the Center for Interdisciplinary Remotely Piloted Aircraft (CIRPAS) Twin Otter aircraft. Hygroscopic growth factor distributions of particles having initial dry nanoparticle diameters of 0.040, 0.059, 0.086, 0.126, 0.186, 0.273, 0.400, and $0.586{\mu}m$ were measured during 19 research flights. Data collected during 12 of those flights were used to investigate aerosol mixing state and the influence of aerosol source region on size-resolved hygroscopicity. The uniformity in size-resolved hygroscopicity was quantified to facilitate comparison between measurements made in different air masses. Hygroscopic growth factors are strongly dependent on source region and sizes. Mean hygroscopic growth factors were observed to be greatest when the air mass origin was from the south. The mean growth factors for continental sources decreased with initial size from 1.47 to 1.27 for $0.040{\mu}m\;and\;0.586{\mu}m$, but increased with initial size from 1.44 to 1.8 for $0.040{\mu}m\;and\;0.400{\mu}m$ dry diameters for marine sources.