• Title/Summary/Keyword: TanDEM-X

Search Result 13, Processing Time 0.021 seconds

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Parallel Computing on Intensity Offset Tracking Using Synthetic Aperture Radar for Retrieval of Glacier Velocity

  • Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • Synthetic Aperture Radar (SAR) observations are powerful tools to monitor surface's displacement very accurately, induced by earthquake, volcano, ground subsidence, glacier movement, etc. Especially, radar interferometry (InSAR) which utilizes phase information related to distance from sensor to target, can generate displacement map in line-of-sight direction with accuracy of a few cm or mm. Due to decorrelation effect, however, degradation of coherence in the InSAR application often prohibit from construction of differential interferogram. Offset tracking method is an alternative approach to make a two-dimensional displacement map using intensity information instead of the phase. However, there is limitation in that the offset tracking requires very intensive computation power and time. In this paper, efficiency of parallel computing has been investigated using high performance computer for estimation of glacier velocity. Two TanDEM-X SAR observations which were acquired on September 15, 2013 and September 26, 2013 over the Narsap Sermia in Southwestern Greenland were collected. Atotal of 56 of 2.4 GHz Intel Xeon processors(28 physical processors with hyperthreading) by operating with linux environment were utilized. The Gamma software was used for application of offset tracking by adjustment of the number of processors for the OpenMP parallel computing. The processing times of the offset tracking at the 256 by 256 pixels of window patch size at single and 56 cores are; 26,344 sec and 2,055 sec, respectively. It is impressive that the processing time could be reduced significantly about thirteen times (12.81) at the 56 cores usage. However, the parallel computing using all the processors prevent other background operations or functions. Except the offset tracking processing, optimum number of processors need to be evaluated for computing efficiency.