• Title/Summary/Keyword: Tamper Localization

Search Result 7, Processing Time 0.022 seconds

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

Review on Self-embedding Fragile Watermarking for Image Authentication and Self-recovery

  • Wang, Chengyou;Zhang, Heng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.510-522
    • /
    • 2018
  • As the major source of information, digital images play an indispensable role in our lives. However, with the development of image processing techniques, people can optionally retouch or even forge an image by using image processing software. Therefore, the authenticity and integrity of digital images are facing severe challenge. To resolve this issue, the fragile watermarking schemes for image authentication have been proposed. According to different purposes, the fragile watermarking can be divided into two categories: fragile watermarking for tamper localization and fragile watermarking with recovery ability. The fragile watermarking for image tamper localization can only identify and locate the tampered regions, but it cannot further restore the modified regions. In some cases, image recovery for tampered regions is very essential. Generally, the fragile watermarking for image authentication and recovery includes three procedures: watermark generation and embedding, tamper localization, and image self-recovery. In this article, we make a review on self-embedding fragile watermarking methods. The basic model and the evaluation indexes of this watermarking scheme are presented in this paper. Some related works proposed in recent years and their advantages and disadvantages are described in detail to help the future research in this field. Based on the analysis, we give the future research prospects and suggestions in the end.

Fragile Watermarking Based on LBP for Blind Tamper Detection in Images

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.385-399
    • /
    • 2017
  • Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.

An Efficient Watermarking for Tamper Localization Proofing (국부적인 변형 검출을 위한 효율적인 워터마킹)

  • Woo, Chan-Il;Jeon, Se-Gil
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • Many watermarking methods for protecting the intellectual property right and authentication multimedia data have been proposed in recent years. In image authentication watermarking, watermark is inserted into an image to detect any malicious alteration. So, watermark for authentication and integrity should be erased easily when the image is changed by scaling or cropping etc. We propose in this paper a fragile watermarking algorithm for image integrity verification and tamper localization proofing using special hierarchical structure. In the proposed method, the image to be watermarked is divided into blocks in a multi-level hierarchy and calculating block digital signatures in thus hierarchy. At each level of the hierarchy, a digital signature for each block is calculated using the seven most significant bit(MSBs)-plane values of all pixels within the block. And the resulting signature is incorporated into the LSBs of selected pixels within the block. We provide experimental results to demonstrate the effectiveness of the proposed method.

A High-Quality Image Authentication Scheme for AMBTC-compressed Images

  • Lin, Chia-Chen;Huang, Yuehong;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4588-4603
    • /
    • 2014
  • In this paper, we present a high-quality image authentication scheme based on absolute moment block truncation coding. In the proposed scheme, we use the parity of the bitmap (BM) to generate the authentication code for each compressed image block. Data hiding is used to authenticate whether the content has been altered or not. For image authentication, we embed the authentication code to quantization levels of each image block compressed by absolute moment block truncation coding (AMBTC) which will be altered when the host image is manipulated. The embedding position is generated by a pseudo-random number generator for security concerned. Besides, to improve the detection ability we use a hierarchical structure to ensure the accuracy of tamper localization. A watermarked image can be precisely inspected whether it has been tampered intentionally or incautiously by checking the extracted watermark. Experimental results demonstrated that the proposed scheme achieved high-quality embedded images and good detection accuracy, with stable performance and high expansibility. Performance comparisons with other block-based data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

Image Authentication and Restoration Using Digital Watermarking by Quantization of Integer Wavelet Transform Coefficients

  • Ahsan, Tanveer;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • An image authentication scheme for gray scale image through embedding a digital watermark by quantization of Integer Wavelet Transform (IWT) coefficients of the image is proposed in this paper. Proposed method is designed to detect modification of an image and to identify tampered location of the image. To embed the watermark mid-frequency band of a second level IWT was used. An approximation of the original image based on LL band was stored in LSB bits of the pixel data as a recovery mark for restoration of the image. Watermarked image has achieved a good PSNR of 40 dB compared to original cover image. Restored image quality was also very good with a PSNR of more than 35 dB compared to unmodified watermarked image even when 25% of the received image is cropped. Thus, the proposed method ensures a proper balance between the fidelity of the watermarked image and the quality of the restored image.

LBP and DWT Based Fragile Watermarking for Image Authentication

  • Wang, Chengyou;Zhang, Heng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.666-679
    • /
    • 2018
  • The discrete wavelet transform (DWT) has good multi-resolution decomposition characteristic and its low frequency component contains the basic information of an image. Based on this, a fragile watermarking using the local binary pattern (LBP) and DWT is proposed for image authentication. In this method, the LBP pattern of low frequency wavelet coefficients is adopted as a feature watermark, and it is inserted into the least significant bit (LSB) of the maximum pixel value in each block of host image. To guarantee the safety of the proposed algorithm, the logistic map is applied to encrypt the watermark. In addition, the locations of the maximum pixel values are stored in advance, which will be used to extract watermark on the receiving side. Due to the use of DWT, the watermarked image generated by the proposed scheme has high visual quality. Compared with other state-of-the-art watermarking methods, experimental results manifest that the proposed algorithm not only has lower watermark payloads, but also achieves good performance in tamper identification and localization for various attacks.