• 제목/요약/키워드: Tall building structures

검색결과 343건 처리시간 0.021초

몬테카를로 기법을 이용한 CFT 기둥축소량의 예측 (Column Shortening Prediction of Concrete Filled Tubes using Monte Carlo Method)

  • 장승우;송화철;소광호
    • 한국공간구조학회논문집
    • /
    • 제10권1호
    • /
    • pp.75-84
    • /
    • 2010
  • CIT 기둥의 장기거동에 관한 기존의 연구과 실험자료에 의하면 크리프 및 건조수축계수는 외부 강관의 구속효과에 의하여 철근콘크리트 기둥보다 작은 값을 가진다. 본 연구에서는 불확실성이 큰 콘크리트 강도와 특정크리프값과 작용하중을 매개변수로 하여 37층 건물의 CFT 기둥에 대한 확률론적 해석을 수행하였으며 매개변수의 특성을 분석하고 CFT 기둥의 축소량 해석값의 예측범위를 정량화하였다. 본 논문에서는 CFT 기둥축소량의 확률론적 해석을 위한 몬테카를로 (Monte Carlo) 기법을 소개하며 다중매개변수를 동시에 적용하여 매개변수의 변동에 따른 축소량의 영향을 분석하고 신뢰지수별 변동폭을 산정하였다.

  • PDF

풍하중에 대한 아웃리거 댐퍼시스템의 응답 제어 성능 평가 (Performance Evaluation of Response Reduction of Outrigger Damper System Subjected to Wind Loads)

  • 김수진;김민주;김준일;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권2호
    • /
    • pp.35-42
    • /
    • 2018
  • The outrigger damper system is a structural system with excellent lateral resistance when a wind load occurs. However, research on outrigger dampers is still in its infancy. In this study, dynamic response control performance of damper is analyzed according to change of stiffness value and damping value of damper. To do this, a real-scale 3D model of 50 stories has been developed and the artificial wind load has been entered for dynamic analysis. Generally, the larger the damping value, the smaller the stiffness value is, the more effective it is to reduce the maximum displacement and acceleration response. However, the larger the attenuation value as the cost of construction increases, it is necessary to select appropriate stiffness and damping value when applying an outrigger damper.

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

이차원 T형강체를 이용한 중심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발 (Development of Efficient Seismic Analysis Model using 2D T-Shape Rigid-body for Wall-Frame Structures with a Central Core)

  • 박용구;이동근;김현수
    • 한국전산구조공학회논문집
    • /
    • 제26권1호
    • /
    • pp.9-17
    • /
    • 2013
  • 본 연구에서는 고층 전단벽-골조 구조시스템의 효율적인 해석모델을 제안하였다. 전단벽-골조구조시스템은 휨거동하는 전단벽과 전단거동하는 골조로 구성된다. 그리고 전단벽-골조구조시스템의 변형형상은 골조와 전단벽의 상호작용으로 결정된다. 효율적인 해석모델에서는 이러한 거동특성을 반영되어야 하므로 골조와 전단벽을 분리하여 동적인 거동특성을 반영할 필요가 있다. 본 연구에서는 벽체부와 골조부를 분리하기 위하여 T형 강체를 전단벽의 위치에 대체하는 방법을 사용하였다. 분리한 벽체부와 골조부 각각의 등가모델을 구성한 후 결합시키는 방법으로 고층 전단벽-골조구조시스템의 등가모델을 완성하였다. 제안한 등가모델의 정확성과 효율성을 검증하기 위하여 고층의 전단벽-골조 구조물의 시간이력해석을 수행하였고, 그 결과 제안한 등가모델이 해석시간과 컴퓨터 메모리를 현저하게 줄이면서도 정확한 결과를 도출하였다.

Inter-story pounding between multistory reinforced concrete structures

  • Karayannis, Chris G.;Favvata, Maria J.
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.505-526
    • /
    • 2005
  • The influence of the inter-story structural pounding on the seismic behaviour of adjacent multistory reinforced concrete structures with unequal total heights and different story heights is investigated. Although inter-story pounding is a common case in practice, it has not been studied before in the literature as far as the authors are aware. Fifty two pounding cases, each one for two different seismic excitations, are examined. From the results it can be deduced that: (i) The most important issue in the inter-story pounding is the local effect on the external column of the tall building that suffers the impact from the upper floor slab of the adjacent shorter structure. (ii) The ductility demands for this column are increased comparing with the ones without the pounding effect. In the cases that the two buildings are in contact these demands appear to be critical since they are higher than the available ductility values. In the cases that there is a small distance between the interacting buildings the ductility demands of this column are also higher than the ones of the same column without the pounding effect but they appear to be lower than the available ductility values. (iii) It has to be stressed that in all the examined cases the developed shear forces of this column exceeded the shear strength. Thus, it can be concluded that in inter-story pounding cases the column that suffers the impact is always in a critical condition due to shear action and, furthermore, in the cases that the two structures are in contact from the beginning this column appears to be critical due to high ductility demands as well. The consequences of the impact can be very severe for the integrity of the column and may be a primary cause for the initiation of the collapse of the structure. This means that special measures have to be taken in the design process first for the critically increased shear demands and secondly for the high ductility demands.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

Topology optimization of bracing systems in buildings considering the effects of the wind

  • Paulo U. Silva;Rayanne E.L. Pereira;Gustavo Bono
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.473-486
    • /
    • 2023
  • Nowadays, urban centers are increasingly vertical, making architects and engineers look for more efficient tools to analyze the effects of wind on tall buildings. Topology optimization can be used as an efficient tool for the design of bracing systems. Therefore, this work obtained the wind loads that act in the CAARC building, following the Brazilian standard NBR 6123/1988 and using Computational Fluid Dynamics. Four loading situations were considered, using the SIMP and BESO methods to optimize two-dimensional structures. A comparison between the SIMP and BESO methods is presented, showing the differences in the geometry of the solution found by both methods, the percentage variation in the objective function values and the dimensionless processing time. The solutions obtained through the loads obtained by the Brazilian standard are also compared with the numerical solutions obtained by CFD. The results show that the BESO method presented more rigid structures compared to the SIMP method. The bracing structures obtained with the SIMP method always present similar patterns in the distribution and quantity of bars, in contrast to the BESO method where no characteristic topology pattern was observed. It was concluded that even though the structures obtained by the BESO method presented greater stiffness, the SIMP method was less susceptible to the methodology used for the determination of wind loads. Additionally, it was evident the great potential that the combination topology optimization and computational wind engineering have in the design of bracing systems of high functional and aesthetic standards.

RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가 (Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.774-779
    • /
    • 2020
  • 본 논문에서는 RNN 순환 신경망 (Recurrent Neural Network) 모델을 사용하여 스마트 중간층 면진 시스템의 지진 응답 제어 성능을 수치 해석을 통하여 검토하였다. 이를 위해서 지진 하중을 받는 건물의 동적 지진 응답 예측을 위한 RNN 모델을 개발하였다. 보다 실제적인 연구를 위하여 중간층 면진 시스템이 설치된 실존하는 건물인 시오도메 스미토모 건물을 예제 구조물로 선택하였다. 스마트 중간층 면진 시스템은 기존의 납 댐퍼를 대신하여 MR (Magnetorheological) 댐퍼를 사용하여 구성하였다. 그 외 고무 베어링이나 강재 댐퍼는 그대로 사용 하였다. 수치 해석을 통하여 개발된 RNN 모델이 기존의 FEM (Finite Element Method) 모델과 비교해서 매우 정확한 응답을 예측하는 것을 확인할 수 있었다. RNN 모델을 사용하면 자유도가 많은 FEM 모델을 사용한 경우에 비하여 해석 시간을 대폭 줄일 수 있다. 개발된 RNN 모델을 사용한 수치 해석 결과 스마트 중간층 면진 시스템이 기존의 수동 중간층 면진 시스템에 비하여 구조물의 지진 응답을 대폭 저감시킬 수 있는 것을 확인할 수 있었다.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse

  • Jiang, Jian;Zhang, Qijie;Li, Liulian;Chen, Wei;Ye, Jihong;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.127-154
    • /
    • 2020
  • Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of collapse resistance, vulnerability and redundancy. The review shows that deterministic measures predominate in quantifying structural robustness by comparing the structural responses of an intact and damaged structure. The attribute-based measures based on structural topology and stiffness are only applicable to elastic state of simple structural forms while the probabilistic measures receive growing interest by accounting for uncertainties in abnormal events, local failure, structural system and failure-induced consequences, which can be used for decision-making tools. There is still a lack of generalized quantifications of robustness, which should be derived based on the definition and design objectives and on the response of a structure to local damage as well as the associated consequences of collapse. Critical issues and recommendations for future design and research on quantification of robustness are provided from the views of column removal scenarios, types of structures, regularity of structural layouts, collapse modes, numerical methods, multiple hazards, degrees of robustness, partial damage of components, acceptable design criteria.