• Title/Summary/Keyword: Talker Separation

Search Result 2, Processing Time 0.017 seconds

Application of Shape Analysis Techniques for Improved CASA-Based Speech Separation (CASA 기반 음성분리 성능 향상을 위한 형태 분석 기술의 응용)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.65
    • /
    • pp.153-168
    • /
    • 2008
  • We propose a new method to apply shape analysis techniques to a computational auditory scene analysis (CASA)-based speech separation system. The conventional CASA-based speech separation system extracts speech signals from a mixture of speech and noise signals. In the proposed method, we complement the missing speech signals by applying the shape analysis techniques such as labelling and distance function. In the speech separation experiment, the proposed method improves signal-to-noise ratio by 6.6 dB. When the proposed method is used as a front-end of speech recognizers, it improves recognition accuracy by 22% for the speech-shaped stationary noise condition and 7.2% for the two-talker noise condition at the target-to-masker ratio than or equal to -3 dB.

  • PDF

Image Separation of Talker from a Background by Differential Image and Contours Information (차영상 및 윤곽선에 의한 배경에서 화자분리)

  • Park Jong-Il;Park Young-Bum;Yoo Hyun-Joong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.671-678
    • /
    • 2005
  • In this paper, we suggest an algorithm that allows us to extract the important obbject from motion pictures and then replace the background with arbitrary images. The suggested technique can be used not only for protecting privacy and reducing the size of data to be transferred by removing the background of each frame, but also for replacing the background with user-selected image in video communication systems including mobile phones. Because of the relatively large size of image data, digital image processing usually takes much of the resources like memory and CPU. This can cause trouble especially for mobile video phones which typically have restricted resources. In our experiments, we could reduce the requirements of time and memory for processing the images by restricting the search area to the vicinity of major object's contour found in the previous frame based on the fact that the movement of major object is not wide or rapid in general. Specifically, we detected edges and used the edge image of the initial frame to locate candidate-object areas. Then, on the located areas, we computed the difference image between adjacent frames and used it to determine and trace the major object that might be moving. And then we computed the contour of the major object and used it to separate major object from the background. We could successfully separate major object from the background and replate the background with arbitrary images.