• Title/Summary/Keyword: Takju mash

Search Result 39, Processing Time 0.04 seconds

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Aspergillus oryzae Nuruks. (Aspergillus oryzae 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Han, Eun-Hey
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.366-372
    • /
    • 2001
  • Volatile flavor components in the mash of Takjus prepared by using Aspergillus oryzae nuruk were identified by using Gas Chromatography and Gas Chromatography-Mass Spectrometry. Twenty-four esters, 21 alcohols, 10 acids, 9 aldehydes and 4 others were found in the mash of Takju. Thirty six components including 13 esters and 12 alcohols were detected in the beginning of fermentation. Twenty nine components were more detected after second day of fermentation and 68 components were detected after 12 days of fermentation. Thirty five flavor components including 12 alcohols such as ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and benzeneethanol, 13 esters such as ethyl acetate, ethyl caprylate, ethyl butyrate and isoamyl acetate, 4 aldehydes and 6 acids were usually detected in the fermentation process. Ethanol was predominantly found in the range of $79.86{\sim}89.54%$ as a major component by using relative peak area. 3-Methyl-1-butanol, ethyl caprylate and benzeneethanol were some of the major volatile components through the fermentation respectively. Peak area of 2-methyl-1-propanol, 1-hexanol, 1-dodecanol, ethyl acetate, monoethyl butanoate, acetic acid and isobutylaldehyde among the same group were higher than other components depending upon fermentation time.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Rhizopus japonicus Nuruks (Rhizopus japonicus 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Han, Eun-Hey
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.691-698
    • /
    • 2000
  • Volatile flavor components in the mash of takjus prepared by using Rhizopus japonicus nuruk were identified by using GC and GC-MS. Twenty-four esters, 19 alcohols, 9 acids, 10 aldehydes and 4 others were found in the mash of takju. Thirty nine components including 14 esters and 12 alcohols were detected in the beginning of fermentation. Seventeen components were more detected after second day of fermentation and 66 components were detected after 12 days of fermentation. Thirty eight flavor components including 12 alcohols such as ethanol, 2-methyl-1-propanol and 3-methyl-1-butanol, 14 esters such as ethylacetate, ethylcaprylate and isoamylacetate, 6 aldehydes and 5 acids were usually detected in the fermentation process. Ethanol was predominantly found in the range of 76.2149-92.1155% as a major component by using relative peak area. 3-Methyl-1-butanol, 2-methyl-1-propanol, ethyl caprylate, 2,3-butanediol and benzeneethanol were some of the major volatile components through the fermentation. Peak area of ethylacetate, diethyl succinate, octanoic acid, acetic acid and isobutylaldehyde among the same group were higher than other component depending upon fermentation time.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Aspergillus kawachii Nuruks (Aspergillus kawachii 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Choi, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.944-950
    • /
    • 2005
  • Volatile flavor components of Takjus mash prepared using Aspergillus kawachii nuruk were identified by GC and GC/MS. Twenty-two esters, 20 alcohols, 10 acids, 8 aldehydes, and 3 others were found in Takju mash. Thirty two components including 13 esters and 13 alcohols were detected at beginning of fermentation. Thirteen more components were detected after second day of fermentation, and 63 additional components after 12 days of fermentation. Twenty nine flavor components including 12 alcohols such as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, and benzeneethanol, 12 esters such as ethyl acetate, ethyl caprylate, and ethyl butyrate 3 aldehydes, and 2 acids were detected during fermentation. Major volatile components detected during fermentation included 3-methyl-1-butanol, ethyl caprylate, and benzeneethanol. Peak areas of 2-methyl-1-propanol, 1-hexanol, 2, 3-butanediol (D.L), 1-dodecanol, 2-phenylethyl acetate, ethyl acetate, and monoethyl butanoate were higher than those of other components depending upon fermentation period.

Flavor Components in Mash of Takju Prepared by Different Raw Materials (원료를 달리하여 담금한 탁주 술덧의 향기성분)

  • Lee, Joo-Sun;Lee, Taik-Soo;Park, Sung-Oh;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.316-323
    • /
    • 1996
  • Flavor components in mash of Takju prepared by different raw materials such as nonglutinous rice, glutinous rice, barley and wheat flour were detected by GC and GC-MS method using non-polar column. Seven alcohols, 15 esters, 10 organic acids, 1 aldehyde, 4 benzenes, 3 phenols, 8 alkans, 2 ketones and 5 others were found in takju after 16 day of fermentation. takju by wheat flour had the most various components of volatile flavor. Treatment with addition starter had less flavor component than that without addition starter in takju by nonglutinous rice. Nine kinds of flavor components including acetic acid ethyl ester, 3- methyl-1-butanol, acetic acid, ethyl benzene, acetic acid 3-methyl butyl ester, 2-phenylethanol, 2,6-di-tert-butyl-4-methyl phenol. plumbagic acid and 1,2-benzenedicarboxylic acid dibutyl ester were commonly detected in all the treatments. Especially, 2,4,0-trimethyl-1,3-benzenediamine was isolated in takju that was made of nonglutinous rice without addition starter. Diethyl sulfide, 4-methoxy benzaldehyde, docosane and 2-methyl propyl octadecanoic acid were isolated from takju by nonglutinous rice with addition starter. Propionic acid ethyl ester, acetic acid butyl ester, 2-methyl butane and 3-methyl pentane were isolated from takju glutinous rice. 2-Hydroxy-4-methyl pentanoic acid and 2-methyl tridecane were isolated from akju by barley 3-(Methylthio)-1-propanol. hexanoic acid ethyl ester, butanoic acid monomethyl ester, tridecanoic acid, ethyl tetramethyl cyclopentadiene and 1,5-diaza-2,9-diketocyclotetradecane were isolated from takju by wheat flour. Major volatile flavor components were acetic acid ethyl ester, 3-methyl-1-butanol, acetic acid and 2-phenylethanol.

  • PDF

Quality Characteristics of Mash of Takju Prepared by Different Raw Materials (원료를 달리하여 담금한 탁주 발효 과정중의 술덧의 품질특성)

  • Lee, Joo-Sun;Lee, Taik-Soo;Noh, Bong-Soo;Park, Sung-Oh
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.330-336
    • /
    • 1996
  • Quality characteristics of mash of takju prepared by different raw materials such at nonglutinous rice. glutinous rice, barley and wheat flour were investigated during fermentation. At the beginning stage of fermentation, ethanol content was in the range of $0{\sim}1.2%$ but it was increased to $9.8{\sim}11.6%$ after 16 day of fermentation. takju that was made of nonglutious rice with starter showed higher ethanol content than any other treatment. At the first stage, pH of takju that was made of nonglutinous rice without starter was 6.57 while other sample showed pH $5.04{\sim}5.80.$ There was no significant difference in pH value between treatments after 2 day of fermentation. Total acid was increased rapidly at the first stage of fermentation, and increased slowly after 2 day of fermentation. Takju that was made of nonglutious rice without of fermentation, and increased slowly after 2 day of fermentation. Takju that was made of nonglutious rice without addition starer showed higher total acid content than the other teratments. Total sugar contents were $19.18{\sim}20.23%$ at the beginning of fermentation, and decreased to $5.21{\sim}14.03%$ after 2-4 days of fermentation. Takju that was made of wheat flour showed higher value of total sugar during the fermentation. Reducing sugar contents of takju decreased with fermentation progressing to $0.2{\sim}0.5%$ after 16 day if fermentation. L value decreased during the fermentation. period and that of takju that was made of barley had lowest L value among the treatment. Alcohols, such as n-propanol ($nd{\sim}0.05\;mg/ml$), iso-butanol (0.02), iso-amyl alcohol ($nd{\sim}0.13$), n-hexanol ($nd{\sim}0.17$), n-heptanol ($nd{\sim}0.09$), and phenylethanol ($nd{\sim}0.02$) were detected. There were no alcohols detected at the beginning of fermentation, but their contents were increased during fermentation.

  • PDF

A Study on the Gas Chromatographic Analysis of Alcohols and Organic Acids during Takju Fermentation (가스 크로마토그래피에 의한 재래주 발효중 알코올과 유기산 분석)

  • Choi, Sun-Hee;Kim, Ok-Kyung;Lee, Myung-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.272-278
    • /
    • 1992
  • Takju, a Korean traditional wine, was prepared by using nuruk and Koji which were inoculated with Aspergillus kawachii and Aspergillus shirousamii. Those chemical composition such as alcohols and organic acids were determined with gas chromatography to investigate the variation of its content by the fermentation. Alcohol such as methyl, ethyl, n-propyl, i-butyl, i-amyl alcohol were detected in the most takju mash samples. Alcohol contents in the groups fermented with KNR and SNR were slightly higher than KKR, SKR groups. Lactic acid were concentrated and organic acids such as pyruvic, oxalic, malonic, succinic, maleic, malic, ${\alpha}-keto$ glutaric acid were also detected in the most samples. The pH was lowest in the KKR group. The total acid content was slightly decreased at the later fermentation and was highest in KKR. The content of minerals were highest in the WNR and BNR groups. Throughout fermentation the content of potassium and magnesium varied greatly with the tested groups.

  • PDF

Studies on Korean Takju using the By-Product of Rice Milling (벼 도정 부산물을 이용한 탁주 제조에 관한 연구)

  • 정은주;백남수;김영만
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • The quality characteristics of traditional Korean Takju fermented with discolored, broken, and milled rice were evaluated. Initial pH of medium and culure temperature for the alcohol fermentation were 4.2 and 26$^{\circ}C$, respectively. After 5 days of cultivation, final pH and temperature were 4.0 and 23.5$^{\circ}C$. The alcohol contents in fermentation of discolored and broken rice was about 18.0% and that of milled rice was 18.7%. The content of succinic acid was highest in organic acid components of products fermented three materials respectively. The major volatiles were 3-methyl-1-butanol, 2-methyl-1-propanol, n-propanol and ethyl acetate. In free amino acid composition of mashes, alanine retained more than 1000 mg%. Free sugars contained in mashes such as glucose, fructose, sucrose, maltose were also analysed by HPLC. Results of sensory evaluation in taste, aroma, color were showed good score above 4.3.

Traditional Fermented Food Products in Korea (한국의 발효식품에 관하여)

  • Mheen, T.I.;Kwon, T.W.;Lee, C.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.253-261
    • /
    • 1981
  • Fermented foods available in Korea may be classified into four groups, namely, fermented soybean products, fermented cereal products, fermented vegetable products, and fermented fishery products based on raw materials used. The representative fermented foods based on soybean are Kanjang(soysauce), Doenjang(fermented soybean pastes), and Kochujang(red pepper added-fermented soybean paste). Such fermented products are made using Meju(functioning as a starter and prepared by fermentation of steamed soybean mash) as an essential ingredient, and used widely as a soup base and/or in seasoning side-dishes for everyday meals year around. Excepting Sikhae, all fermented products based on rice and other cereal grains are of alcoholic nature. Takju (Makgeolli) used to be made using rice as the major raw material, however, mainly due to the shortage of rice in recent years, other cereals, such as, barely, corn, and wheat flours are also used to replace rice today. Owing to such changes in the raw materials. the popularity of Takju has been somewhat reduced, yet it is still widely consumed in rural areas. Although Chungju is a popular rice wine with superior qualify over Takju, the amount consumed is considerably limited. The highest qualify rice wine, Bupju, in particular, is made by a low temperature fermentation using glutinous rice. Kimchi is an unique fermented vegetable product of long tradition in Korea. Although it was for consumption mainly in winter season serving as a source of vitamins, today it is widely used throughout the year. Except Kkakdugi and Dongchimi, all of the fermented vegetable products contain salted Korean cabbage as an essential item, while they abound in varieties depending on material composition and methods of processing, and also on seasons and localities Next to Kimchi in this category is Kkakdugi made of raddish in popularity and quantity consumed. The four groups of fermented food products described above are reviewed in some detail and evaluated in terms of their nutritional significances, processes and microorganisms involved. and their commercial potentials. Jeotkal (or Jeot) is a name given to all fermented products of fishery origin. A number of Jeot can be prepared by adding salt and allowing fermentation to the raw materials such as shrimp, anchovy octopus, clam, oyster, etc.

  • PDF

Quality Characteristics of Takju Fermentation by Addition of Chestnut Peel Powder (율피가루를 첨가한 탁주의 품질 특성)

  • Jeong Jin-Woong;Park Kee-Jai;Kim Myung-Ho;Kim Dong-Soo
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • The characteristics of mash qualities of takju prepared by addition of chestnut peel powder(5%, 10%, 20% and 30% per steamed rice) were investigated during fermentation. That is, in all fermentation periods, changes of pit total acid, organic acids, solids, amino nitrogen, total sugar and reducing sugar, microorganisms, alcohol and color were determined and analyzed. There was significant differences in characteristics of mash qualities by addition of chestnut peel powder. In general, contents of total acid, organic acids, amino nitrogen, total sugar, reducing sugar and ethanol of takju added with chestnut peel powder were lower than those of steamed rice only, whereas solid contents was higher. But ethanol content of takju added with 5% of chestnut peel powder after 8 days of fermentation was 9.6% which was similar to that of takju prepared by addition of steamed lice only. Also, microbial populations such as total viable cells, yeast and lactic acid bacteria of the treatments were increased to about $10^8CFU/mL$ after 2 days of fermentation and then decreased gradually. In the beginning stage of fermentation color differences value of the treatments were $1.99{\sim}10.27$, and the differentials reduced gradually during fermentation.