• 제목/요약/키워드: Takeoff and Landing

검색결과 86건 처리시간 0.03초

인천국제공항 아스팔트 포장 보수시기 결정 사례 연구 (Case Study on Deciding a Time for Repairing Asphalt Pavement of Incheon International Airport)

  • 이재호;김장락;문형철;조남현
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.49-60
    • /
    • 2013
  • PURPOSES : The evaluation of the pavement condition of the asphalt concrete pavement of No. 2 runway of Inchon International Airport through PMS, a supporting system for making a decision of pavement, maintenance and repair, was made, and the proper time for repair according to the PCI reduction rate was suggested. METHODS : By comparing and analyzing the evaluation results of pavements built in 2009, 2010, 2011, PCI change in each facility (No. 2 runway, C parallel taxiway, connection taxiway) was calculated. By applying the calculated change to PCI deduction rate model, the pavement condition of the target sections was estimated, and then the necessary section and time for repair were chosen. RESULTS : After careful consideration of the time for pavement and maintenance, based on the result of PCI prediction, it was estimated that the southern takeoff and landing section of No. 2 runway was required to be repaired in 2012; connection taxiway in 2013; and C parallel taxiway in 2014; however, the section which is the main moving route of connection taxiway and C parallel taxiway was needed to be repaired in 2012. CONCLUSIONS : For maintenance and repair of airport pavements, the optimal alternative should be chosen by considering economics and operability, via examining the time for repair and the aspect of management all together on the basis of this study.

UAM 상용화를 위한 버티포트 구축 사례 연구: 프랑스 퐁투와즈 실증사례를 중심으로 (Case Study Building a Vertiport for UAM Commercialization: Based on the Demonstration in Pontoise-Cormeiles, France)

  • 김주민
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.77-86
    • /
    • 2024
  • Urban Air Mobility (UAM) is considered the future of transportation, offering solutions to urban challenges and reducing environmental issues through the use of electric power and leveraging the sky as a new transportation corridor. UAM has diverse applications, including passenger and goods transportation, emergency rescue operations, patient transfers, and urban tourism. Furthermore, it is poised to revolutionize the transportation landscape, impacting existing infrastructures such as roads and parking lots, along with autonomous vehicles. The UAM industry is anticipated to exert a significant impact on various sectors, including airframe manufacturing, the development of new materials (e.g., fuel cells and batteries), and even the defense industry, resulting in substantial economic benefits. Consequently, conducting proactive research and setting industry standards for UAM takeoff and landing infrastructure is crucial for securing market leadership. In this regard, the case of Pontoise-Cormeiles, France, stands out as it achieved the world's inaugural successful demonstration of a vertiport before the 2024 Olympics. This achievement has significant implications for our preparations for the commercialization of UAMs. Thus, a detailed review of the French vertiport construction case in this study will serve as a foundation for guiding the planning and operation of UAMs in South Korea, particularly in anticipation of upcoming demonstration tests.

활주로 마찰계수 측정 및 적용에 관한 연구 (A Study on the Application of Runway Friction Measurements)

  • 노건수
    • 한국항공운항학회지
    • /
    • 제24권3호
    • /
    • pp.62-68
    • /
    • 2016
  • According to the accident/incident reports of aircraft runway overruns and excursions, it generally shows runway friction reduction and aircraft braking capability deterioration are the basic causes due to adverse weather. Although surface of paved runway gets wet, it also should give good friction capability. If runway surface is worn due to long time usage and friction capability is reduced due to rubber accumulation or weather conditions(snow, rain, ice etc.), airport authorities should rapidly measure friction coefficient and give them to relevant persons through aeronautical information system and support safe takeoff and landing. Operation wise, these information of friction coefficient reduction should be lead to aircraft performance adjustments, but the data from manufacturer(performance manual) are airplane braking coefficient and the data from airport authorities are vehicle measured braking coefficient. But these two data are considered as the same meaning although the definite relationship between them is not clarified yet. So I am trying to search for the technical background of these two data and suggest reasonable method to use them efficiently.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

스마트 무인기 흡기구 설계 및 성능해석

  • 정용운;전용민;양수석
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.197-207
    • /
    • 2004
  • 현재 개발중인 스마트 무인기는 일반적인 헬리콥터와 같이 수직이착륙이 가능할 뿐만 아니라 고정익기와 같이 고속의 비행이 가능함을 목표로 하고 있다. 그러므로 흡기구는 여러 비행조건에서 엔진이 제 효율을 낼 수 있도록 충분한 공기를 흡입하루 수 있어야 함은 물론이고 비행체의 운행속도에 따라서도 그 효율이 어느 이상 저하되지 않도록 설계되어야 한다. 본 논문에서는 고속 비행체에 적합한 pitot 형태와 엔진 특성에 따른 플레넘 챔버를 장착한 흡기구를 설계하였다. 그리고 CFD-ACE를 이용하여 설계된 흡기구의 성능 해석을 수행하였으며 엔진 내부에서의 swirl과 distortion을 조사하고 압력손실에 대해서 연구하였다.

  • PDF

CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측 (Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis)

  • 정용운;전용민;양수석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구 (The study of dynamic safety using M&S for Integrated Electro-Mechanical Actuator installed on aircraft)

  • 이석규;이병호;이증;강동석;최관호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.36-41
    • /
    • 2014
  • Electro-Mechanical Actuator installed on aircraft consists of a decelerator which magnifies the torque to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. EMA controls aircraft attitued, position, landing, takeoff, etc. It is important part of a aircraft. Aircraft maneuvering make vibration of EMA. Vibration may cause the vibration fatigue. For that reason, it is necessary to analyze the system safety. In this paper, first EMA is modeled in finite element method and analyzed the response from input vibration. second EMA is tested and analyzed from modal experimental data. third EMA Fe model is updated and re analyzed. and EMA is verified safety with $3{\sigma}$ stress and S/N curves.

  • PDF

미끄럼 측정치로서의 뒤로미끄러짐 (Backward Slip as a Measure of Floor Slipperiness)

  • Myung, Rohae
    • 대한인간공학회지
    • /
    • 제20권2호
    • /
    • pp.47-57
    • /
    • 2001
  • To simulate an actual slip to measure floor slipperiness, slip resistance testers simulate slip in only forward direction because forward slip in the landing phase was found to be the most important factor for loss of balance. Backward slip in the take off phase was possible but was excluded in the friction test protocol because it was not dangerous. However, backward slip was tested in the friction test protocol without any theoretical background of the significance in generating dangerous slips and falls and was proven to be as good as forward slip in measuring floor slipperiness. Therefore, this study was designed to investigate the significance of backward slip in generating dangerous slips and falls with different combinations of floor and shoe sole. The results showed different tendency of backward slip in take off phase being significant in generating dangerous slips and falls because backward slip in the takeoff phase affected gait pattern disturbances seriously. resulted in dangerous falls. Fast toe velocity increased the severity of backward slip and confirmed the significance of backward slip in generating dangerous slips and falls. As a result, this study recommends the utilization of backward slip in the measurement of floor slipperiness.

  • PDF

활주로시단이설에 따른 착륙대 위험발생빈도 변화 연구 (A Study on the Variation in the Risk Probability of Runway Strips due to the Runway Displaced Threshold)

  • 김도현;장효석
    • 한국항공운항학회지
    • /
    • 제29권4호
    • /
    • pp.45-51
    • /
    • 2021
  • A runway safety area (RSA) is defined as the surface surrounding the runway prepared or suitable for reducing the risk of damage to airplanes in the event of an undershoot, overshoot, or excursion from the runway. The Runway Stripe is a defined area including the runway stopway, if provided, intended firstly to reduce the risk of damage to aircraft running off a runway, and secondly, to protect aircraft flying over it during takeoff or landing operations. This study used 2 RSA analysis models; RSARA and LRSARA. The analysis utilizes historical data from the specific airport and allows to take into consideration specific operational conditions to which movements are subject, as well as the actual or planned RSA conditions in terms of dimensions, configuration, and boundaries defined by existing obstacles. This study applied the RSA and LRSA risk assessment models to a domestic airport that do not meet the criteria required by standards for aerodrome physical characteristics. The airport is considering a method to secure the runway strip standard through the displaced threshold. This study intends to confirm through quantitative risk estimation whether meeting facility standards through the runway displaced threshold leads to a positive change in risk mitigation.

제주국제공항 저층급변풍 발생 특성 및 예측 성능 (Low Level Wind Shear Characteristics and Predictability at the Jeju International Airport)

  • 김근회;최희욱;석재혁;이상삼;이용희
    • 한국항공운항학회지
    • /
    • 제31권3호
    • /
    • pp.50-58
    • /
    • 2023
  • Sudden wind changes at low altitudes pose a significant threat to aircraft operations. In particular, airports located in regions with complex terrain are susceptible to frequent abrupt wind variations, affecting aircraft takeoff and landing. To mitigate these risks, Low Level Wind shear Alert System (LLWAS) have been implemented at airports. This study focuses on understanding the characteristics of wind shear and developing a prediction model for Jeju International Airport, which experiences frequent wind shear due to the influence of Halla Mountain and its surrounding terrain. Using two years of LLWAS data, the study examines the occurrence patterns of wind shear at Jeju International Airport. Additionally, high-resolution numerical model is utilized to produce forecasted information on wind shear. Furthermore, a comparison is made between the predicted wind shear and LLWAS observation data to assess the prediction performance. The results demonstrate that the prediction model shows high accuracy in predicting wind shear caused by southerly winds.