• Title/Summary/Keyword: Take-off Performance

Search Result 190, Processing Time 0.024 seconds

Noise Prediction of Hovering Tilt Rotor (정지 비행 시 틸트 로터에서 발생하는 소음 예측)

  • Kim, Kyu-Young;Lee, Seong-kyu;Lee, Duck-Joo;Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

  • Ye, Xi;Qiao, Ying;Lu, Zongxiang;Min, Yong;Wang, Ningbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1596-1604
    • /
    • 2013
  • Coordinating operation between large-scale wind power and thermal units in multiple time scale is an important problem to keep power balance, especially for the power grids mainly made up of large coal-fired units. The paper proposes a novel operation mode of multi-scale unit commitment (abbr. UC) that includes mid-term UC and day-ahead UC, which can take full advantage of insufficient flexibility and improve wind power accommodation. First, we introduce the concepts of multi-scale UC and then illustrate the benefits of introducing mid-term UC to the wind-coal intensive grid. The paper then formulates the mid-term UC model, proposes operation performance indices and validates the optimal operation mode by simulation cases. Compared with day-ahead UC only, the multi-scale UC mode could reduce the total generation cost and improve the wind power net benefit by decreasing the coal-fired units' on/off operation. The simulation results also show that the maximum total generation benefit should be pursued rather than the wind power utilization rate in wind-coal intensive system.

A study on design and modeling of a Wave Energy Converter (파력발전기의 에너지 회생을 위한 연구)

  • Yoon, JongIl;Ahn, KyongKwan;Dinh, Quang Truong;Hoang, Huu Tien
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.167.2-167.2
    • /
    • 2011
  • Motions in nature, for example ocean wave, has been playing a significant role for generating electricity production in our modern life. This paper presents an innovative approach for electric power conversion of the vast ocean wave energy. Here, a floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), which is shortened as HSTWEC, is proposed and designed to enhance the wave energy harvesting task during all wave fluctuations. In this HSTWEC structure, the power take-off system (PTO) is a combination of the designed HST circuit and an electric generator to convert mechanical energy generated by ocean wave into electrical energy. Several design concepts of the HSTWEC have been considered in this study for an adequate investigation. Modeling and simulations using MATLAB/Simulink and AMESim are then carried out to evaluate these design concepts to find out the best solution. In addition, an adaptive controller is designed for improving the HSTWEC performance. The effectiveness of the proposed HSTWEC control system is finally proved by numerical simulations.

  • PDF

Tail Sizing of 95-Seat Type Turboprop Aircraft (95인승급 터보프롭 중형항공기 꼬리날개 사이징)

  • Lee, Jangho;Kang, Youngsin;Bae, Hyogil;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Tail wing is important to designing of civil aircrafts, because it is responsible for aircraft stability and control. Tail wing has a role in aircraft control and makes aircraft fly stably without any pilot control input. Also, designing of tail wing determine trim drag force in whole aircraft. Center of gravity(CG) of aircraft travels with various effects as placement of passenger's seats, location of cargo bay, etc. In designing horizontal tail volume, aircraft CG travel has to be considered to have margin so that it should be sized to provide adequate stability and control for the airplane's entire CG range throughout the flight envelope. Finally, it is essential to have sufficient elevator control to perform stall at forward CG for all flaps down configurations. Such stalls establish the FAR stall speed which airplane take-off and landing performance. This paper deals with the process for tail wing design regarding the aircraft CG travel and results for 95-seat type turboprop aircraft.

CONSTRUCTION OF THE BOAO ECHELLE SPECTROGRAPH (BOES) (보현산천문대 고분산 에셀분광기(BOES) 제작)

  • KIM KANG-MIN;JANG JEONG GYUN;CHUN MOO-YOUNG;PARK BYEONG-GON;HYUNG SIEK;HAN INWOO;YOON TAE SEOG;VOGT STEVEN S.
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.119-126
    • /
    • 2000
  • The BOES (BOAO Echelle Spectrograph), a fiber-fed echelle spectrograph of the BOAO 1.8 m telescope, has been designed and now is being manufactured. The BOES follows a white pupil design collimated with two off-axis parabolic mirrors. The 136mm collimating beam leaving the 41.59 grooves/mm R4 echelle grating is refocused near the narrow folding mirror. Through the two cross-disperser prisms and $\phi250 mm(f/1.5)$ transmission camera, the beam images on EEV $2k\times4k$ CCD. The BOES can take the wavelength range of 3700 to $10100{\AA}$ at a single spot with spectral resolution R = 20000 to 40000 depending on the fiber set employed. We describe the key sciences and performance, current status of construction, and future plan of the BOES.

  • PDF

A Design Study on a Phase Change Heat Exchanger of an Environmental Control System for a POD (POD용 환경조절장치를 위한 상변화열교환기 개념연구)

  • Yoo, Yung-Jun;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • While a conventional ECS mainly consisted of an air cycle machine and heat exchangers, a new concept of a phase change heat exchanger was added to improve the transient performance of the ECS. As a result, an ECS modeling program including the phase change heat exchanger is newly developed to estimate its effect in various flight conditions such as take-off, maneuver, cruise, and landing. The simulation result regarding a virtual flight profile has confirmed the new ECS fulfilled the requirement by showing the temperature of the cooling air returned from the bay was always kept below $80^{\circ}C$. Through this study, the new ECS concept with PCHE was verified successfully.

Re-Design of Wing Flap for Very Light Jet Aircraft Incorporating Airworthiness Certification (항공안전인증을 고려한 소형제트항공기 플랩 재설계)

  • Yoon, Jung-Won;Lee, Hyo-Jin;Lee, Jae-Woo;Kim, Sang-Ho;Byun, Yung-Hwan;Kim, Im-Gun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, a conceptual design process for Very Light Jet aircraft has been proposed incorporating aircraft safety certification. During the proposed design process, satisfaction of the airworthiness certification for an intermediate resulting aircraft configuration is evaluated and then redesigns are carried out if necessary and until the designed aircraft configuration satisfies the airworthiness requirements. Certification database has been developed using FAR 23, AC 23, KAS 23, and CS 23 as the airworthiness certification. Based on the developed certification database Design Certifcation Related Table has been produced to use the airworthiness requirements as design constraints in the propsed design process. Using Quality Function Deployment the design variables for a redesign are carefully selected and a design optimization is performed. To demonstrate the feasibility and effectiveness of rapid aircraft conceptual design using the proposed approach, a Very Light Jet design optimization including a redesign of wing flap has been performed and the design results have been presented.

Optimisation of a novel trailing edge concept for a high lift device

  • Botha, Jason D.M.;Dala, Laurent;Schaber, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.329-343
    • /
    • 2015
  • This study aimed to observe the effect of a novel concept (referred to as the flap extension) implemented on the leading edge of the flap of a three element high lift device. The high lift device, consisting of a flap, main element and slat is designed around an Airbus research profile for sufficient take off and landing performance of a large commercial aircraft. The concept is realised on the profile and numerically optimised to achieve an optimum geometry. Two different optimisation approaches based on Genetic Algorithm optimisations are used: a zero order approach which makes simplifying assumptions to achieve an optimised solution: as well as a direct approach which employs an optimisation in ANSYS DesignXplorer using RANS calculations. Both methods converge to different optimised solutions due to simplifying assumptions. The solution to the zero order optimisation showed a decreased stall angle and decreased maximum lift coefficient against angle of attack due to early stall onset at the flap. The DesignXplorer optimised solution matched that of the baseline solution very closely. The concept was seen to increase lift locally at the flap for both optimisation methods.

Multi-objective parametric optimization of FPSO hull dimensions

  • Lee, Jonghun;Ruy, Won-Sun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.734-745
    • /
    • 2021
  • In order to achieve a good and competitive FPSO design, the building cost and the motion performances are the two most critical and conflicting KPIs to be considered. In this study, the author's previous work (Lee, et al., 2021) on the optimization of an FPSO's hull dimensions with 1800 MBBLs storage capacity at Brazil field was extended using a multi-objective parametric optimization with the hull steel weight and the operability which are closely related to the building cost and the operational cost during the lifetime, respectively. For the purpose of more realistic and practical FPSO design, the constraints related to crew comfort and the safe helicopter take-off and landing operation were newly added. Also, the green water on deck was calculated accurately to check the suitability of the designed freeboard height using a newly developed real-time calculation module for the relative wave elevations. With aids of this updated optimization formulation, we presented multiple optimal FPSO dimensions expressed as a Pareto set which aids FPSO designers to conveniently select the practical and competitive dimensions. The excellence of the developed approach was verified by comparing the optimization results with those of FPSOs dimensioned for operation at West Africa and Brazil field.

A Study on Optimal Duration Estimation for Construction Activity

  • Cho, Bit Na;Kim, Young Hwan;Kim, Min Seo;Jeong, Tae Woon;Kim, Chang Hak;Kang, Leen Seok
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.612-613
    • /
    • 2015
  • As a construction project is recently becoming large-scaled and complex, construction process plan and management for successful performance of a construction project has become more important. Especially a reasonable estimation plan of activity duration is required because the activity duration is directly related to the determination of the entire project duration and budget. However, the activity duration is used to estimate by the experience of a construction manager and past construction records. Furthermore, the prediction of activity duration is more difficult because there is some uncertainty caused by various influencing factors in a construction project. This study suggests an estimation model of construction activity duration using neural network theory for a more systematic and objective estimation of each activity duration. Because suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project. And it can be a more systematic estimation method of activity duration comparing to the estimation method by experience of project manager.

  • PDF