• 제목/요약/키워드: Tailored blanks

검색결과 32건 처리시간 0.018초

극저탄소강의 Mash Seam TB 용접성 평가에 관한 연구 (A Study on Weldability Criteria of Mash Seam Tailored Blank Welds in the Ultra-low Carbon Steel Applied on Automotive Body)

  • 한창우;이창희;이명호
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.538-543
    • /
    • 2002
  • M/S TB(Mash Seam Tailored Blank) is a production method for blanks by welding together blanks of different material, thickness and coating, and is an attractive method for manufacturing car body because it makes parts lighter and can save the cost and time to manufacture. However, there have not been quantified criteria to evaluate the quality of TB weld. This study introduced FHR (failure height ratio) in order to assess formability or/and weldability of the M/S welds and the applicability of FHR was confirmed by actual auto body forming and FLD tests. Furthermore, a new parameter, HN(heat number) based on the heat input of "$Q=I^2Rt$" was proposed and assessed. It was found that the concept of HN could be utilized to evaluate the soundness of M/S welds without any destructive tests.ive tests.

용접판재의 성형한계에 관한 실험적 연구 (Forming Limits for the Welded Sheets)

  • 허영무;김형목;서대교
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.429-436
    • /
    • 1999
  • In sheet metal forming , forming limit diagram is very important to design and analyze of sheet metal forming process. Recently tailor welded blanks of different thickness and different material and strength combinations are used widely in automobile industry to reduce car manufacturing cost. In order to analyze the forming characteristics of tailored welded blanks, we have investigated the forming limit dia-grams for 3 kinds of different material using mash seam and laser welding experimentally and dis-cussed for the characteristics of forming for tailor welded blanks. It is concluded that forming limit dia-gram for the different material combination TWB locates between FLD of the thinner base material sheet and the thicker ones.

  • PDF

자동차 범퍼빔 적용 차세대 재료기술의 개발 (The Development of Material Technology Applied to Bumper Beam)

  • 이상제;박진수;구도회;정병훈
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.206-215
    • /
    • 2002
  • It is to be classified into friendly environment and safety problems, as a main technology development of the recent automotive industry. As these tendency, lots of automobile companies focus on a reduction of fuel expenses and strengthen of crash safety using high strength steel. In this study advanced technologies such as tailored blanks, aluminum extrusion and high strength steel forming applied to bumper beam will be described. As a result of impact analysis and an actual impact test, in terms of beam performance and a possibility fur the mass production will be discussed.

Tailor Welded Blanks를 이용한 승용차용 Sub-frame의 설계기법 연구 (A Study on the Development of Sub-frame Designe Using Tailor Welded Blanks)

  • 전병희
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.22-30
    • /
    • 2000
  • The sub-frame of passenger car begins to be used widely for the safety of passengers. Conventional design of the sub-frame comprises 22parts, and it requires quite complicated production processes. In this papers, the sub-frame is designed with TWB(Tailor Welded Blanks) to improve stiffness, to reduce weight and to simplify the manufacturing process. To design the proper structure, structural analysis and crash analysis are executed about the conventional design and TWB applied design. A prototype TWB applied sub-frame is manufactured using mash-seam welded TB(Tailored Blanks). Comparing with the conventional sub-frame, the TWB applied sub-frame has 30% weight reduction and 17% increasement of structural stiffness in average.

  • PDF

용접판재(Tailored Blank)를 이용한 Door Inner 개발 (Development of Door Inner with Tailored Blanking Technology)

  • 김관회;조원석;김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.95-101
    • /
    • 1998
  • The steel door inner was manufactured via a new route, tailored blanking process, to remove hinge reinforcement parts, using thicker panels laser welded, instead. It is very important, first of all, in this process, to design optimum configuration of tailored blanks and determine the optimum process control for the stamping. Generally, it was found that the severe deformation reduction behavior during stamping in the thinner panel around weld line caused cracks and the other troubles in formability. It is our purpose of this investigation to introduce how the process control parameters, such as tailored blank configuration, size, location in the die, the position of weld line, BHF, bead configuration, work on the formability. In addition, causes of cracks and movement of weld line after forming were analyzed and compared with computer simulation work.

Tailored Blank 용접을 위한 감시제어장치 개발 (Development of Monitor & Controller for Tailored Blank Welding)

  • 장영건;유병길;이경돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.323-327
    • /
    • 1996
  • Gap and thickness difference information between blanks are often necessary for tailored blank welding quality evaluation , optimum welding parameters selection and evaluation of shearing machine, blink allocation device accuracy and clamping device. We develope 3D vision system and camera unit using structured lighting for this purpose. A simple ar d efficient scheme for gap and thickness feature recognition Is developed as well as measurements. Experimental results shows this system measuring accuracy is 10 ${\mu}{\textrm}{m}$ and 16${\mu}{\textrm}{m}$ for gap and thickness difference respectively The data are expexed to be useful for preview gap control.

  • PDF

Tailored Blank를 이용한 Side Panel 성형 (Stamping of Side Panel Using the Tailored Blank)

  • 권재욱;명노훈;백승엽;인정제;이경돈;유순영;이영국
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.102-109
    • /
    • 1998
  • In this study, the side panels were developed using the laser-welded Tailored Blanks (TB) with both the same thickness and the different thickness. At first, the formability of the same thickness T.B was investigated to be compared with one of the non welded panel with respect to weldline movements and strain distribution on blank during the stamping. Based on these results, we selected candidates of T.B with different thickness for stamping experiments. That is, we determined the weld line positions and the die step. Then we made some stamping tryouts with selected types of blank designs to investigate the formability of T.B with different thickness. During the tryouts, the wrinkles were found in the a-pillar lower region which is under the deformation mode of the shrink flange. In the b-pillar region, the fractures were found also, these defects have been reduced and corrected by controlling the blank design and the die faces and process pamameters.

테일러드블랭크 용접을 위한 전단 공정 연구 (A Study on Mechanical Shearing Process for Tailored Blank Welding)

  • 유병길;이경돈
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.66-75
    • /
    • 1999
  • Weld bead quality in tailored blank(TB) is critically affected by edge preparation of sheets. The edge quality of prepared sheets for TB can be classified into straightness and the cross section quality of sheared plane such as a ratio of shear face, shear plane angle, etc. In order to have a good edg quality for butt-welding sheets, precision shearing will be recommended. In this paper, the feasibility of a conventional mechanical shearing as the edge preparation for tailored blanks is studyied. It reveals that fine shearing may not be the unique solution as it is generally accepted. To obtain the good shearing condition with a conventional mechanical shearing, experiments were carried out using Tahuchi method. The major parameters affecting a sheared contour are the clearance between upper blade and lower blade, and shear angle. The optimal shearing condition yields a very good straightness along the entire length of the cut, which gives a butt joint gap less than 10% of the base material thickness. The good cross section of sheared plane is also achieved in the optimal shearing condition such as a ratio of the shear face above 65%, a cross section's shear plane angle above 85%, little burr, which is providing finally good weld beads.

  • PDF

레이저 용접 테일러드 블랭크 신장 플랜지의 성형 최적화 (Optimization of Stretch Flange Forming of Laser Welded Tailored Blank)

  • 인정제;안덕찬
    • 소성∙가공
    • /
    • 제10권4호
    • /
    • pp.283-293
    • /
    • 2001
  • Laser welded tailored blanks(TB) are increasingly used in automotive parts. Among these, TB side panel has forming difficulties in stretch flanging areas such as front and center pillar lower region. To avoid splits in the stretch flanging areas, Proper design of blank shape and drawbeads are essential In this study, the forming simulaton is carried out to investigate the influences of blank shape and drawbeads on stretch flange formability of different thickness TB. And an optimization procedure including the effects of both the blank design and drawbeads is presented. The optimization procedure proposed in this study is expected to be effectively used in blank and die design of TB side panel.

  • PDF

레이저 테일러드 블랭크 용접 품질 모니터링 시스템 개발 (Development of laser tailored blank weld quality monitoring system)

  • 박현성;이세헌
    • 한국레이저가공학회지
    • /
    • 제3권2호
    • /
    • pp.53-61
    • /
    • 2000
  • On the laser weld production line, a slight alteration of the welding condition produces many defects. The defects are monitored in real time, in order to prevent continuous occurrence of defects, reduce the loss of material, and guarantee good quality. The measurement system is produced by using three photo-diodes for detection of the plasma and spatter signal in CO$_2$ laser welding. For high speed CO$_2$ laser welding, laser tailored welded blanks for example, on-line weld quality monitoring system was developed by using fuzzy multi-feature pattern recognition. Weld qualities were classified optimal heat input, a little low heat input, low heat input, and focus misalignment, and final weld quality were classified good and bad.

  • PDF