• Title/Summary/Keyword: Taguchi Orthogonal Array

Search Result 192, Processing Time 0.027 seconds

Robust Design of vehicle Intoner Noise using Taguchi method and Substructure Synthesis Method (다구찌법과 부분구조합성법을 이용한 차실소음 강건설계)

  • Kim, Hyo-Sig;Tanneguy, DE-KERDREL;Kim, Hee-Jin;Cho, Hyo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a robust design of vehicle interior noise using Taguchi method and a substructure synthesis method with a hybrid model. Firstly, the proposed method identifies the critical process of the concerned interior noise through a TPA (Transfer Path Analysis). Secondly, a strategy for a robust design is discussed, in which the major noise factor among uncertainties in the process is quality distribution of rubber bushes connecting a cradle and a trimmed body. Thirdly, a virtual test model fer the process is developed by applying a substructure synthesis method with a hybrid modeling approach. Fourthly, virtual tests are carried out according to the predefined tables of orthogonal array in Taguchi robust design process. The process was performed under 2 sub-steps. The first step is sensitivity analysis of 31 panels, and the other step is weight optimization of mass dampers on sensitive panels. Finally, two vehicles with the proposed countermeasures were validated. The proposed method reduces 87.5% of trials of measurements due to the orthogonal arrays and increases robustness by 8.6dB of S/N ratio and decreases $5\;dB(A){\sim}10\;dB(A)$ of interior noise in the concerned range of RPM.

  • PDF

An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method (다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구)

  • Kim, Jang Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).

Evaluation of Grinding Machining Characteristics of $ZrO_2$ Ferrule Using the Taguchi Method (다구치 방법을 이용한 지르코니아 세라믹스 페룰의 연삭 가공 특성 평가)

  • 김기환;최영재;홍원표;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.516-519
    • /
    • 2004
  • As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.325-342
    • /
    • 2014
  • The use of lightweight aggregate (LWA) instead of ordinary aggregate may make lightweight aggregate concrete, which possesses many advantages such as lightweight, lower thermal conductivity, and better fire and seismic resistance. Recently the developments of LWA have been focused on using industrial wastes as raw materials to reduce the use of limited natural resources. In view of this, the intent of this study was to apply Taguchi optimization technique in determining process condition for producing synthetic LWA by incorporating waste thin film transition liquid crystal displays (TFT-LCD) glass powder with reservoir sediments. In the study the waste TFT-LCD glass cullet was used as an additive. It was incorporated with reservoir sediments to produce LWA. Taguchi method with an orthogonal array L16(45) and five controllable 4-level factors (i.e., cullet content, preheat temperature, preheat time, sintering temperature, and sintering time) was adopted. Then, in order to optimize the selected parameters, the analysis of variance method was used to explore the effects of the experimental factors on the performances (particle density, water absorption, bloating ratio, and loss of ignition) of the produced LWA. The results showed that it is possible to produce high performance LWA by incorporating waste TFT-LCD glass cullet with reservoir sediments. Moreover, Taguchi method is a promising approach for optimizing process condition of synthetic LWA using recycled glass cullet and reservoir sediments and it significantly reduces the number of tests.

The Optimization of Ball End-Milling Parameters on the Surface Roughness of STD61 Steel using the Taguchi Method (Taguchi 방법을 이용한 STD61의 표면거칠기에 대한 볼 엔드 밀링 파라미터 최적화)

  • Ahmed, Farooq;Byeon, Ji Hyeon;Park, Ki Moon;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.153-158
    • /
    • 2017
  • When considering the proper function and life cycle length of a product, its surface finish plays an important role. This experimental study was carried out to understand the effect of input factors on surface roughness and how it can be minimized by controlling the input parameters. This experimental work was performed by machining the surface of STD 61 blocks with a surface inclined at $30^{\circ}$ by ball end-milling and optimizing the input parameters using the Taguchi technique. Signal-to-Noise (S/N) ratio and analysis of variance (ANOVA) were applied to find the significance of the input parameters. The optimum level of input parameters to minimize surface roughness was obtained.

A Study on Surface Roughness in Wire Electrical Discharge Machining of STD11 based on Taguchi method (다구찌법에 의한 STD11의 와이어방전가공에서 표면거칠기에 관한 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.7-11
    • /
    • 2014
  • The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of STD11. Based on the Taguchi experimental design ($L_{27}$ orthogonal array) method, a series of experiments were performed by considering time-on, voltage, time-off, wire speed, and flow rate as input parameters. The surface roughness was considered responses. Based on the signal-to-noise (S/N) ratio, the influence of the input parameters on the responses was determined. The optimal machining parameters setting for the minimum surface roughness was found using Taguchi methodology. In order to investigate the effects of process parameters on the surface machined by WEDM, Several experiments are conducted to consider effects of time-on, voltage, time-off, wire speed and flow rate on the surface roughness. Analysis of variance (ANOVA) as well as regression analysis are performed on experimental data. The best results of surface roughness were obtained at higher voltage, lower wire speed, and lower time-on.

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 팬터그래프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2003
  • Pantograph design Process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings(FW-H) equation is used to calculate the flow induced sound pressure level in aeroacoustics. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25 m away from Pantograph. Based on aerodynamic(CFD) and aeroacoustic(FW-H) analysis data, the optimal sizing and Positioning of panhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. In this paper, two-step optimization method is used as a parameter design procedure. It is executed using signal to noise(S/N) ratio and analysis of means(ANOM) method. So Thus, an optimal level of design parameters Is extracted to minimize the disconnection ration between contact strips and catenary system, and reduce the far-field aeroacoustic noise.