• 제목/요약/키워드: Taebaek Mountains

검색결과 63건 처리시간 0.023초

하안단구와 수비분지의 지형발달 (River Terraces and Geomorphic Development of Subi Basin, Yeongyang)

  • 손명원
    • 한국지형학회지
    • /
    • 제24권2호
    • /
    • pp.15-25
    • /
    • 2017
  • Subi basin is located at the crestline of Taebaek mountains. This paper aims to elucidate the geomorphic development of Subi basin through the analysis of river terraces built in Wangpi-cheon and Banbyeon-cheon. Wangpi-cheon flows northeastward from Subi basin, and Banbyeon-cheon flows southward at the west of Subi basin. Absolute age of terrace is measured by means of OSL methodology, long profile of Wangpi-cheon is made up with 10m interval contour line, and the elevation above river bed of high terraces is measured at the end part of terrace. The results are as follow: Firstly, high river terraces of Subi basin, Wangpi-cheon and Banbyeon-cheon are formed about 40 kyr(MIS 3) being interstadial stage of last glacial period. Secondly, the elevation above river bed of high terraces of Wangpi-cheon and Banbyeon-cheon tends to increase toward upstream. It means that the uplift of Taebaek Mountains influences considerably the formation of their terraces. Thirdly, the elevation above river bed of high terraces at the reach from Seomchon to Suha-ri of Wangpi-cheon tends to decrease toward upstream. This section is captured from Banbyeon-cheon flowing in the opposite direction. River piracy has occurred from the time of formation of Suha-ri high terrace to the time of formation of Hantee wind gap. Finally, for fluvial system of Wangpi-cheon to establish dynamic equilibrium, topographic axis will move toward Banbyeon-cheon.

자연 지역으로서의 태백 산지 (Taebaek Mountainous Region as a Natural Unit)

  • 기근도
    • 한국지역지리학회지
    • /
    • 제8권4호
    • /
    • pp.468-479
    • /
    • 2002
  • 태백 산지는 대체로 냉량하고 습한 편이지만, 강수량은 지역적으로 많은 차이를 나타내고 있다. 이와 같은 기후지형 환경과 관련하여 태백산지의 지형 및 토양환경은 기반암의 유형에 따라서 차이를 보인다. 북부의 금강산과 설악산 같은 화강암 분포 지역은 절리밀도의 차이를 반영하는 풍화 성향 때문에 암괴 노출이 심한 산지를 이루며, 미시령 일대의 편마암 분포 지역은 전사면이 흙으로 덮여있고 상대적으로 식생밀도가 높은 곳이다. 중부에서는 암괴 노출이 심한 타지역의 화강암산지와는 달리 박토상태지만 대체로 전사면이 흙으로 덮여있다. 이는 이 지역이 눈이 많고 서릿발 작용이 활발하여 화강암을 얇게나마 풍화시킬 수 있었기 때문이다. 남부에서는 급사면의 뾰족한 봉우리와 좁고 깊은 협곡을 이루는 석회암산지 및 완만한 사면지역의 여러 가지 용식지형이 발달한다. 이 지역에는 초본류나 관목류들이 연속성이 높게 분포하여 박토상태인 토양을 잘 보전하고 있다.

  • PDF

소백산맥 북부 영동영서 하천의 하각과 지형 발달 (Incision and Geomorphic Development of Rivers on Eastern and Western Sides of the Northern Sobaek Mountains)

  • 조영동;박충선;이광률
    • 한국지형학회지
    • /
    • 제24권2호
    • /
    • pp.27-40
    • /
    • 2017
  • This study tries to analyze topographic distribution and characteristics of as well as formative age and incision rate of fluvial terraces in Danyang River on western side and Geum River on eastern side of the northern Sobaek Mountains and to estimate geomorphic development during the late Quaternary in the mountains regarded as one of the uplift axes in the Korean Peninsula. OSL age dating shows that the fluvial terrace I with an altitude above riverbed of approximately 7~13 m in Danyang River has a formative age of approximately 18 ka (MIS 2) and incision rate in the river is approximately 0.156~0.194 m/ka based on the age. Altitudes above riverbed of the fluvial terrace I in Geum River range from approximately 7 to 14 m and the terrace is thought to be older than 70 ka based on age result from aeolian sediments above the terrace deposits, suggestive of an incision rate less than approximately 0.10 m/ka. These results indicate lower uplift rate in the northern Sobaek Mountains than in the Taebaek Mountains. Moreover, it can be suggested that the northern Sobaek Mountains has experienced asymmetric uplift during the late Quaternary, because the river on western side of the northern Sobaek Mountains shows greater uplift rate than the eastern side river does. Low incision rate in Geum River can be attributed to low altitude of the river basin with little difference in altitude from the base level as well as to gentle river slope due to influence of Nakdong River.

한반도 산맥의 재조사와 분류 및 대기환경에 미치는 영향 (The New Classification of Mountains in the Korean Peninsula and the Mountain Associated Influence on Atmospheric Environment)

  • 정용승;김학성
    • 한국지구과학회지
    • /
    • 제37권1호
    • /
    • pp.21-28
    • /
    • 2016
  • 한반도의 약 70% 이상을 차지하고 있는 산지는 많은 산들과 산맥으로 이루어져 있으며, 산맥들은 대기환경에 큰 영향을 준다. 산맥의 분류조사는 1900-1902년 일본학자에 의거 수행 된 후, 현재 산맥의 이름이 매우 많고 혼선이 되고 있다. 본 연구는 기존의 산맥 이름과 그 분류를 간단히 하여 사회적 교육적 활용에 가치를 두고 있다. 먼저, 중국의 만주로부터 (대)한반도까지 주축을 이루는 세계적인 제2차 중규모산맥을 단일 이름인 고려산맥으로 명명하였다. 그리고, 고려산맥에 수반되는 지역적인 제3차 산맥들은 지린(길림)산맥, 함경산맥, 태백산맥, 소백산맥으로 분류하고, 그 다음 제4차 산맥은 랴오닝산맥, 옌볜(연변)산맥, 함북산맥, 평북산맥, 황해산맥, 차령산맥, 경상산맥, 남해산맥 등 8개의 중소 산맥으로 분류 하였다. 일반적으로 한반도의 산맥들은 지구규모 대순환의 영향을 지속적으로 받고 있다. 산맥의 풍상과 풍하 측에서 발생하는 공기환경적인 변화에 따라, 인간과 생태계에 주는 대기환경의 영향평가와 그 감시의 필요성을 강조하였다.

강원도 지역의 PRISM를 이용한 강우의 공간분포 해석 (Spatial Analysis of Precipitation with PRISM in Gangwondo)

  • 엄명진;정창삼
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.179-188
    • /
    • 2011
  • 본 연구에서는 강원도의 지역인자를 이용하여 지점 강우량과 면적 강우량의 관계를 파악하였다. 강원도는 면적의 대부분이 산지로 형성된 산악지형이며 태백산맥 동쪽 (영동지방)은 경사가 급하여 해안평야의 발달이 취약하고, 태백산맥 서쪽 (영서지방)은 경사가 완만하여 남 북한강의 대하천이 발달하고 곳곳에 산지가 분포되어 있는 복잡한 지형이다. 강원도 지역의 확률강우량 공간분포를 산정하기 위하여 강원도 인근의 기상관측소 66개소의 자료를 이용하였으며, 강우의 공간분포를 분석하기위하여 PRISM을 적용하였다. 적용결과를 도시한 결과 지형 조건 (고도 및 경사)과 지역적인 조건(영동 및 영서지방, 북한강 지역 및 남한강 지역)에 따라 적정하게 분포된 것으로 나타났으며, 교차검증을 통한 분석결과 RRBIAS 및 RRMSE가 모두 0.1 이하의 낮은 값을 나타내어 PRISM 분석이 적정하게 수행되었음을 알 수 있었다. 따라서 본 연구에서 적용한 PRISM 모형이 강원도 내 확률강우량의 공간분포를 예측하는데 유용한 것으로 판단된다.

지형을 고려한 기온 객관분석 기법 (Objective analysis of temperature using the elevation-dependent weighting function)

  • 이정순;이용희;하종철;이희춘
    • 대기
    • /
    • 제22권2호
    • /
    • pp.233-243
    • /
    • 2012
  • The Barnes scheme is used in Digital Forecast System (DFS) of the Korea Meteorological Administration (KMA) for real-time analysis. This scheme is an objective analysis scheme with a distance-dependent weighted average. It has been widely used for mesoscale analyses in limited geographic areas. The isotropic Gaussian weight function with a constant effective radius might not be suitable for certain conditions. In particular, the analysis error can be increased for stations located near mountains. The terrain of South Korea is covered with mountains and wide plains that are between successive mountain ranges. Thus, it is needed to consider the terrain effect with the information of elevations for each station. In order to improve the accuracy of the temperature objective analysis, we modified the weight function which is dependent on a distance and elevation in the Barnes scheme. We compared the results from the Barnes scheme used in the DFS (referred to CTL) with the new scheme (referred to EXP) during a year of 2009 in this study. The analysis error of the temperature field was verified by the root-mean-square-error (RMSE), mean error (ME), and Priestley skill score (PSS) at the DFS observation stations which is not used in objective analysis. The verification result shows that the RMSE and ME values are 1.68 and -0.41 in CTL and 1.42 and -0.16 in EXP, respectively. In aspect of spatial verification, we found that the RSME and ME values of EXP decreased in the vicinity of Jirisan (Mt. Jiri) and Taebaek Mountains. This indicates that the new scheme performed better in temperature verification during the year 2009 than the previous scheme.

북한 지역의 산맥군이 영동 지역의 겨울철 강설 분포에 미치는 영향에 관한 수치 연구 (A Numerical Case Study Examining the Orographic Effect of the Northern Mountain Complex on Snowfall Distribution over the Yeongdong Region)

  • 이재규;김유진
    • 대기
    • /
    • 제19권4호
    • /
    • pp.345-370
    • /
    • 2009
  • Numerical experiments using the Weather Research and Forecasting (WRF) model were done to identify the role of the mountain ranges in the northern part of the Peninsula (referred as "the northern mountain complex"), in the occurrence of two heavy snowfall events over the Yeongdong region on 7-8 December 2002 and 20-21 January 2008. To this end, control simulations with the topography of the northern mountain complex and other simulations without the topography of the mountain complex were performed. It was revealed that the amount of snowfall over the Yeongdong region from the control simulation much more exceeded that of the simulation without the topography of the mountain complex. This increase of the snowfall amount over the Yeongdong region can be explained as follows: As the upstream flow approached the northern mountain complex, it deflected around the northern mountain complex due to the blocking effect of the mountains with a low Froude number less than ~0.16. This lead to the strengthening of northeasterly over the East Sea and over the Yeongdong region. The strong northeasterly is accompanied with much more snowfall over the Yeongdong region by intensifying air-mass modification over the sea and the orographic effect of the Taeback mountains. Thus, it was concluded that the topography of the northern mountain complex is one of the main factors in determining the distribution and amount of precipitation in the Yeongdong region when there is an expansion of the Siberian High toward the East Sea.

고해상도 규모상세화 수치자료 산출체계(KMAPP)를 이용한 저고도 항공난류 진단 (Diagnosis of Low-Level Aviation Turbulence Using the Korea Meteorological Administration Post Processing (KMAPP))

  • 석재혁;최희욱;김연희;이상삼
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.1-11
    • /
    • 2020
  • In order to diagnose low-level turbulence in Korea, diagnostic indices of low-level turbulence were calculated from Aug 2016 to Jul 2019 using a Korea Meteorological Administration Post Precessing (KMAPP) developed by the National Institute Meteorological Sciences (NIMS), and the indices were evaluated using Aircaft Meteorological Data Relay (AMDAR). In the mean horizontal distribution of diagnostic indices calculated, severe turbulence was simulated along major domestic mountains, including near the Taebaek Mountains, the Sobaek Mountains and Hallasan Mountain on Jeju Island due to geographical factors. Later, detection performance was evaluated by calculating the KMAPP Low-Level Turbulencd index (KLT) on combined index, using AUC value of Individual diagnostic indices as a weight. The result showed that the AUC value of KLT was 0.73, and the detection performance was improved (0.02-0.13) when the index was combined. Also, when looking for the AMDAR data is divided into years, seasons, and altitudes, up to 0.94 AUC values were found in winter (DJF) and the surface (surface-1,000ft). By using high-resolution numerical data reflecting detailed terrain data, local turbulence distribution was well demonstrated and high detection performance was shown at low-level.

Microfibril Angle Characteristics of Korean Pine Trees from Depending on Provinces

  • KIM, Ji-Yeol;KIM, Soo-Chul;KIM, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권4호
    • /
    • pp.569-576
    • /
    • 2020
  • This study investigated the characteristics of microfibril angle(MFA) in order to see if there was any difference in pine tree lumber quality among the three mountain areas surrounding the Taebaek Mountains in Korea - Yeongdong (Goseong-gun), Yeongseo (Hongcheon-gun) and Yeongnam (Bonghwa-gun). Pine trees of each mountain area were divided into earlywood and latewood in relation to heartwood part (1959 ~ 1961, 3 annual rings) and sapwood part (2002 ~ 2004, 3annual rings), and measured at tangential section. The microfibril angle showed significant differences between mountain areas. In general, Goseong Mountain was found to have 37.35°, followed by Hongcheon Mountain 32.42° and Bonghwa Mountain 25.75°, in order. The sapwood part had larger angle than heartwood part; and earlywood, than latewood. Variation within a single annual ring tended to be smaller from earlywood toward latewood.

자병산 일대의 호석회 및 혐석회식물의 분류 (Classification of Calcicoles and Calcifuges in Mt. Jabyeong)

  • 김병우;오영주
    • 동굴
    • /
    • 제61호
    • /
    • pp.17-46
    • /
    • 2000
  • Mt. Jabyeong(872.5m), limestone region in the Taebaek mountains, located in 37° 32'N, 129° 25'E and in Sangye-ri, Okgye-myeon, Gangreung-si and Samok-ri, Imgye-myeon, Jeongseon-gun, Gangwon-do. The purposes of this study were to investigate the floristic composition from 1997 to 1998 in Mt. Jabyeong and report the distribution of Korean endemic plants, rare and vulnerable plants, calcicoles and calci fuges, The vascular plants in this area were composed of 93 families, 313 genera, 3 subspecies, 57 varieties, 13 forms, 495 species, totaling 568 taxa. Among the vascular plants, 21 taxa were Korean endemic plants and 7 taxa were rare and vulnerable plants. Calcicole and calcifuge plants in this study area were composed of 21 families, 30 genera, 36 species and 14 families, 15 genera, 17 species. The soil pH values of study site in Mt. chabyoung were ranging 7.4∼8, which showed that this site was a mostly limestone area with alkaline soil. And soil depth was formed to a relative thin layer, mostly 2~4cm thickness. This site showed high content of moisture and organic matter which were ranging 40-45% and 15-25%, respectively.

  • PDF