• Title/Summary/Keyword: TWISTING

Search Result 464, Processing Time 0.026 seconds

A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities

  • Yoon, Kyungho;Lee, Youngyu;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.411-437
    • /
    • 2012
  • In this paper, we propose a continuum mechanics based 3-D beam finite element with cross-sectional discretization allowing for warping displacements. The beam element is directly derived from the assemblage of 3-D solid elements, and this approach results in inherently advanced modeling capabilities of the beam element. In the beam formulation, warping is fully coupled with bending, shearing, and stretching. Consequently, the proposed beam elements can consider free and constrained warping conditions, eccentricities, curved geometries, varying sections, as well as arbitrary cross-sections (including thin/thick-walled, open/closed, and single/multi-cell cross-sections). We then study the modeling and predictive capabilities of the beam elements in twisting beam problems according to geometries, boundary conditions, and cross-sectional meshes. The results are compared with reference solutions obtained by analytical methods and solid and shell finite element models. Excellent modeling capabilities and solution accuracy of the proposed beam element are observed.

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites with Multiple Delamination (다중 층간 분리부가 내재된 복합재 쉘 고차 지그재그 모델의 유한요소 해석)

  • 오진호;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.229-236
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection. which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the buckling problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The accuracy of the present element is demonstrated in the prediction of buckling loads and buckling modes of shells with multiple delaminations. The present shell element should serve as a powerful tool in the prediction of buckling loads and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis (에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석)

  • Hong, Seokmoo;Hwang, Jihoon;Kim, Cheulgon;Eom, Seong-uk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

Development of a System Observing Worker's Physiological Responses and 3-Dimensional Biomechanical Loads in the Task of Twisting While Lifting

  • Son, Hyun Mok;Seonwoo, Hoon;Kim, Jangho;Lim, KiTaek;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2013
  • Purpose: The purpose of this study is to provide analysis of physiological, biomechanical responses occurring from the operation to lifting or twist lifting task appears frequently in agricultural work. Methods: This study investigated the changes of physiological factors such as heart rate, heart rate variability (HRV) and biomechanical factors such as physical activity and kinetic analysis in the task of twisting at the waist while lifting. Results: Heart rates changed significantly with the workload. The result indicated that the workload of 2 kg was light intensity work, and the workload of 12 kg was hard intensity work. Physical activity increased as the workload increased both on wrist and waist. Besides, stress index of the worker increased with the workload. Dynamic load to herniated discs was analyzed using inertial sensor, and the angular acceleration and torque increased with the workload. The proposed measurement system can measure the recipient's physiological and physical signals in real-time and analyzed 3-dimensionally according to the variety of work load. Conclusions: The system we propose will be a new method to measure agricultural workers' multi-dimensional signals and analyze various farming tasks.

The Optimum Processing Conditions of ATY for PET Braiding for Automotive Hoses (자동차호스용 PET 브레이딩 직물의 최적 ATY 공정조건)

  • Kim, Seung-Jin;Choi, Woo-Hyuk;Kim, Sang-Ryong;Jo, Jin-Hwang;Moon, Chan
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.11-22
    • /
    • 2009
  • This study surveys the optimum processing conditions of ATY for PET braiding for automotive hoses. For this purpose, high tenacity and low shrinkable PET filaments with three types of deniers are prepared. Twenty seven ATY specimens are manufactured with variation of feed speed and overfeed on the air jet texturing machine. The physical properties of various yam according to the ATY processing conditions are measured and analysed for deciding the optimum ATY processing condition. Two kinds of ATY filaments made under the optimum air texturing conditions are processed with variation of tpm, heat setting temperature and heat setting time on the 2-for-l twister and setting chamber, respectively. The optimum twisting and heat setting conditions are decided through analysis of the yam physical properties. Finally, the braiding fabric specimens are manufactured using conventional filament and newly developed filament made under optimum twisting and heat setting conditions. The bursting strengths of these braiding specimens are compared and discussed between two types of specimens.

A Study on Response Time Delay and Tracking Error Suppression Strategy in Gear Mechanism : Control System Design Approach (기어 백래쉬로 인한 응답지연 및 추종오차 억제방안에 관한 연구)

  • Tran, Manh Son;Choi, Eun-Ho;KIM, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.77-83
    • /
    • 2017
  • The aim of this paper is to solve the chattering and delayed response problems caused by gear backlash. In the gear mechanism based systems, for example, in robot systems, the actuators provide the reduction gear with motors to transfer effectively electric power to mechanical power. Therefore, the gear backlash exists and is an unavoidable fact which makes many undesirable problems. In this paper, the authors try to make a solution for this issue and, introduce several control methods which are PID only, PID with Smith predictor and super-twisting algorithm based SMC(sliding mode control). Each control method is applied to the real plant in which strong backlash is included. By comparison results, it is clear that SMC gives the best control performance with little backlash effects. Also, the usefulness and effectiveness of proposed control method is verified by experiment.

A Study on the Structural Design Approach to Improve Shockproof Characteristic in Cathode Ray Tube (음극선관의 내충격 특성 향상을 위한 구조 설계에 관한 연구)

  • Park, Sang-Hu;Kim, Won-Jin;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.100-105
    • /
    • 2000
  • In this study the structural design concepts of main parameters of a Cathode Ray Tube(CRT) such as frame spring and shadow mask were proposed to guarantee a failure-proof CRT under mechanical shock. With computer simulation and experiments some information on the structural design concept was obtained as followings: the frame and the shadow mask of the CRT needed designing to increase strength so double-beads shape at the corner of frame was newly designed for it, And the spring which interconnected frame with panel glass was required to deform elastically for the purpose of absorbing the shock energy in the direction of drop. A new type of spring 'twisting spring' was designed to achieve the flexibility in that direction. By using it the deformation energy of a shadow mask could reduced to some degree. To accomplish those simulations commerical codes Pam-Crash and I-DEAS were used and a typical CRT was analyzed as an example to prove the usefulness of this study.

  • PDF

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna (복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험)

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.