• Title/Summary/Keyword: TWC

Search Result 95, Processing Time 0.04 seconds

Effect of Marine Environment Changes on the Abundance and Community Composition of Cyanobacteria in the South Sea of Korea (남해 해역의 해양환경변화가 시아노박테리아 개체수와 군집 조성에 미치는 영향)

  • Won, JongSeok;Lee, Yeonjung;Lee, Howon;Noh, Jae Hoon
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.279-293
    • /
    • 2021
  • To investigate the effect of seasonal marine environment conditions on the cyanobacteria abundance and diversity in the South Sea, four-seasonal surveys were conducted along the 127.5°E survey transect line in the central South Sea using flow cytometry and 16S-23S ITS on the Miseq platform from August 2016 to May 2017. The average abundance of Synechococcus varied from 3.3 × 103 to 7.4 × 104 cells ml-1. The abundance was the highest in the summer and the lowest in the winter, and the abundance fluctuated according to water temperature. The abundance was high in the outer sea affected by TWC. However, in summer, the Coastal areas affected by the Yangtze River were more populated than the outer sea. Prochlorococcus was rare and could not penetrate into coastal areas due to the fronts, but showed its dominance in the waters influenced by the TWC. Synechococcus clades II, VII, IX, CRD1, and CRD2 were predominant in the outer sea area affected by the TWC. In the coastal area, clades I and IV showed higher dominance whereas clades V, VI, WPC1, and 5.3-MS3 with euryhaline characteristics, showed a high dominance rate in the water masses affected by the low-salinity water of the Yangtze River in the summer. Clade XVI, XVII, CB1, CB5, and 5.3-I/II showed high dominance in nutrient-rich waters in the summer with increased water temperature. The abundance and community composition of cyanobacteria changed in the South Sea due to the influence of the TWC and stratification. In the summer, the abundance and the community composition differed, and were mainly affected by the general influence of the TWC in addition to the influence of the Yangtze River low-salinity water.

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.

Relationship between the variation of the Tsushima Warm Current and current circulation in the East Sea (동해에서 potential vorticity와 해류순환과의 관계)

  • Lee Chung Il;Cho Kyu Dae;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.89-92
    • /
    • 2004
  • Potential vorticity is useful to illustrate mechanism and distribution pattern of current circulation the upper layer in the East Sea is divided into three part following like surface layer, Tsushima Warm Current(TWC) layer. Potential vorticity shows well the meandering of the TWC and polar front and circulation cell ill the northern part of polar front.

  • PDF

Development of train speed controller for EMU using servo-controller

  • Lee, Su-Gil;Han, Seong-Ho;Han, Young-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.1-178
    • /
    • 2001
  • The ATO(Automatic Train Operation) System is used for train operation instead of dreivers. It is interfaced with TCMS(Train Control and Monitoring System) and ATC/TWC system in the train and wayside facilities. In this paper describes configuration of ATO, Specification of ATO hardware, construction of ATO software and the algorithm for automatic train speed regulation in the carborn ATO system. This paper is mainly concerned with the development of the ATO System. The ATO system is used for automatic or driverless operation of a train using various informations from TCMS, ATC, TWC. In this paper, the general architecture of the ATO system, implementation of ATO application software and the algorithm using servo-controller for automatic train speed controller.

  • PDF

New Encoder/Decoder with Wavelength/Time 2-D Codes for Optical CDMA Network (광 부호 분할 다중접속 네트워크를 위한 파장/시간 2차원 코드의 새로운 부호기/복호기)

  • Hwang, Hu-Mor
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1035-1040
    • /
    • 2009
  • We propose a new encoder/decoders based on an tune able wavelength converter(TWC) and an arrayed waveguide grating(AWG) router for large capacity optical CDMA networks. The proposed encoder/decoder treats codewords of wavelength/time 2-D code simultaneously using the dynamic code allocation property of the TWC and the cyclic property of the AWG router, and multiple subscribers can share the encoder/decoder in networks. Feasibility of the structure of the proposed encoder/decoder for dynamic code allocation is tested through simulations using two wavelength/time 2-D codes, which are the generalized multi-wavelength prime code(GMWPC) and the generalized multi-wavelength Reed-Solomon code(GMWRSC). Test results show that the proposed encoder/decoder can increase the channel efficiency not only by increasing the number of simultaneous users without any multiple-access interference but by using a relatively short length CDMA codes.

Variation characteristics of water masses by advection of Tsushima Warm Current in southern part of the East Sea in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.242-243
    • /
    • 2001
  • Tsushima Warm Current(WD entering into the East Sea through the Korean Strait flows northeastward and during this travel it shows complicated movement like meandering and eddy. It is considered that these variations of TWC are important causes making water masses unstable and also have influence on biological and chemical properties of water masses. Lee and Cho(2000) suggested that meandering of TWC in adjacent waters of Noto peninsula has much influence on fluctuation of current structure. (omitted)

  • PDF

Seasonal Characteristics of Todarodes pacificus Paralarval Distribution in the Northern East China Sea (북부 동중국해 살오징어(Todarodes pacificus) 유생분포의 계절특성)

  • Kim, Jung Jin;Kim, Cheol-Ho;Lee, Joon-Soo;Kim, Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-61
    • /
    • 2014
  • We conducted eight surveys in the northern East China Sea (ECS) in winter (February - April), summer (July), and autumn (October) 2004-2009, to investigate the seasonal distribution of T. pacificus. A total of 482 paralarvae, ranging in mantle length (ML) from 1.0 - 17.0 mm, were collected at 73 out of 181 stations. There were higher numbers of paralarvae during the winter and summer months than in the autumn. There was significant seasonal variation in the paralarval mantle lengths; mantle lengths were longer in winter (April) than in summer (July). The position of oceanic fronts in the study area played an important role in restricting paralarval distribution along the inshore edge of the Tsushima Warm Current (TWC). When the TWC expanded to western Jeju Island in winter and autumn, the paralarval distribution range extended to include western Jeju Island. However, when the TWC was located southeast of Jeju Island in the summer, paralarvae were distributed along the frontal zone off southeast Jeju Island. Sites at which paralarval mantle length was <2.0 mm ML indicated that the spawning ground were likely to be within the northern ECS in winter and summer, but north of the study area in autumn.

Tunnel wall convergence prediction using optimized LSTM deep neural network

  • Arsalan, Mahmoodzadeh;Mohammadreza, Taghizadeh;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Hanan, Samadi;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.545-556
    • /
    • 2022
  • Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.

Comparison of Community Structure of Fish Larvae in the Northern East China Sea in Normal and El Niño/La Niña Periods (엘리뇨/라니냐와 정상 기간 동중국해 북부해역의 자치어의 군집구조 비교)

  • Yoo, Joon-Taek;Choi, Jung-Hwa;Kim, Jin-Yeong;Kim, Jong-Bin;Choi, Kwang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.907-916
    • /
    • 2013
  • The aim of this study was to compare community structure of larval fish species in the northern East China Sea during normal meteorological conditions in autumn 2009, during the El Ni$\tilde{n}$o period in 2009-2010, and during the La Nina period in 2010. Fifty taxa were recorded during the study period; the most dominant species were Benthosema pterotum and Gobiidae spp. In October 2008 during the normal period, warm water from the Tsushima Warm Current (TWC) intruded more into the surface and middle layers, and cold water affected by the Yellow Sea Cold Water (YSCW) intruded into the bottom layer. In October 2009 during the El Ni$\tilde{n}$o period, intrusion of the China Coastal Water (CCW), which has low salinity (<32.2 psu), was more apparent than intrusion of the TWC or YSCW. In October 2010 during the La Nina period, intrusion of the TWC and CCW was relatively weak, resulting in the lowest temperature and highest salinity observed during the study period in the eastern part of the study area. Hierarchical cluster, one-way ANOSIM (analysis of similarities), and SIMPER (similarity-percentages procedure) analyses provided two main results. First, the abundance of the most dominant larval fish species in autumn of the normal period was greater than that in autumn of the El Ni$\tilde{n}$o/La Nina periods, resulting in a significant difference in ichthyoplankton community structure between the periods. The abundance of Benthosema pterotum increased in the normal period, possibly influenced by the intrusion of cold water from the YSCW; the abundance of species residing in Korean waters (e.g., Gobiidae spp.) probably decreased during the El Ni$\tilde{n}$o/La Nina periods. The second finding was that the abundance of subtropical larval fish in autumn of the normal period was generally larger than that during autumn of the El Ni$\tilde{n}$o/La Nina periods. This could have been induced by the stronger intrusion of warm water from the TWC during the normal period. Although differences in oceanographic conditions between El Ni$\tilde{n}$o and La Nina periods were observed, the differences in ichthyoplankton community structure between the two periods were not significant.