• Title/Summary/Keyword: TVOCs

Search Result 56, Processing Time 0.038 seconds

Assessment of the Indoor Air Quality at Schools in Ulsan (울산지역 학교의 실내공기질 평가)

  • Jung, Jong-Hyeon;Seo, Bo-Sun;Ju, Dong-Jin;Park, Man-Chul;Shon, Byung-Hyun;Phee, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.472-479
    • /
    • 2010
  • The purpose of this study was to investigate the concentration of indoor air pollutants at 63 elementary schools, 41 middle schools and 51 high schools in Ulsan from the beginning of May to the end of December, 2008. To assess the indoor air quality of the various classrooms, the 8 indoor air pollutants such as $CO_2$, CO, $NO_2$, $O_3$, $PM_{10}$, TVOCs, HCHO and TBC were measured and analyzed. The mean concentrations of $PM_{10}$ and TBC in the elementary schools were significantly higher than those of middle and high schools (p < 0.01). For the HCHO, the multi-use practice rooms showed an average 1.5 times higher than general classrooms. In schools located in urban areas, the concentrations of CO, $O_3$, $PM_{10}$, HCHO and TBC were lower than in the vicinity of industrial complexes. The exceeding rate of the school air quality maintenance limits in the 6 air pollutants by law were 6.7%, 3.5%, 1.7%, 18.2%, 13.0% and 18.4% for $CO_2$, $NO_2$, $O_3$, $PM_{10}$, HCHO and TBC, respectively. Based on these results $PM_{10}$ and TBC have to be in the order of priority of need to improve the classroom air quality in elementary school of Ulsan.

Economical Ventilation Effectiveness to Reduce Hazardous Chemical Emissions for a Nail-Salon Worker

  • KWON, Woo-Taeg;JUNG, Min-Jae;LEE, Woo-Sik;KWON, Lee-Seung;SO, Young-Jin
    • Journal of Distribution Science
    • /
    • v.17 no.7
    • /
    • pp.65-76
    • /
    • 2019
  • Purpose - The purpose of this study is to investigate economical ventilation effectiveness to reduce hazardous materials exposure and damage of workers by analyzing exposure amount of noxious substances under various ventilation conditions of nail salon for indoor environments. Research design, data, and methodology - This study was carried out with cooperation of Nail shop located in SeongNam city to involve an analysis of the environmental impact indoor air quality, pollutant exposure and economical cost-effectiveness in the nail workplace. The hazardous substances were PM-10(Particulate Matter-10㎛), VOCs(Volatile Organic Compounds) and Formaldehyde, which are the major materials of nail workplace. Results - PM-10 is reduced by about 60% with air cleaner, forced artificial ventilation by 32%, and natural ventilation by about 12%. TVOCs and Formaldehyde showed similar efficiency (80~100%) after natural ventilation and ventilation after 60 minutes. The removal efficiencies of VOCs and formaldehyde were similar to those of natural ventilation and mechanical ventilation system. However, in case of dust, natural ventilation was reduced by artificial ventilation system due to inflow of external dust during natural ventilation. Conclusions - If the pollution degree of outdoor air is not high, air volume is high, and natural ventilation is performed when the air conditioning and heating system is not operated. Even at the end of the work, it keeps operating for 60 minutes to remove the pollutants generated. Results of this analysis demonstrated that the worker environment can be improved by adopting institutional legislation and guidelines for ventilation.

Architectural Implementation of the Indoor Air Quality in the Elementary School Classroom (학교건물의 실내공기환경 개선방안에 관한 건축계획적 연구)

  • Koo, Jae-Oh;Bae, Sun-Chul;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • Indoor air quality(IAQ) problems are not limited to large office buildings that are inadequately operated. In fact, many school buildings have significant potentials of air pollution and indoor air pollutants may be of particular concern because it is estimated that most young students who are physically weak to the pollutants spend about 90% of their time in classrooms. The goal of the study is to provide academic and architectural information on the major factors that influence indoor air quality in the elementary school. In order to gain a better understanding of IAQ problems in schools, a series of measurement studies of indoor air quality were designed and 3 different elementary school buildings located in Chuncheon were selected. The levels of CO, $CO_2$, and total volatile organic compounds(TVOCs) including formaldehyde(HCHO), major concern of this study, were measured in absence of students after class. As the results, it is noticeable that most indoor air pollution comes from sources inside the building, which are, for example, adhesives, upholstery, manufactured wood products, art and scientific supplies. The level of CO was measured similarly to that of outdoors, which means no impact on the indoor air problems since it is lower than the code. Ventilation played an important role in the level of $CO_2$ of which difference was 1.7 times in rough and 230 % of difference in the level was detected among the 3 school buildings. This concludes that indoor air problems might be result of poor building design with inadequate location of corridors within space organization or occupant activity patterns of ventilation.

A study on the chemical emission of furnitures using the large chamber method (대형챔버에 의한 생활제품(가구류) 방출오염물질 특성연구)

  • Park, Jae-Hyoung;Knag, Yoon-Kyung;Lee, Yun-Gyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.742-747
    • /
    • 2008
  • Formaldehyde(HCHO) and total volatile organic compounds(VOCs) can cause adverse health effects to the building occupants and may contribute to symptoms of 'Sick Building Syndrome'. These chemical contaminants are emitted from furnishings and electronic equipments as well as building materials. The purpose of this study is to measure and analyze VOCs and HCHO emission concentration from furnitures composed of wood materials including various chemicals by the large chamber method. This paper presents experiment results on the emission concentration of TVOCs and HCHO released from furnitures, such as bed, kitchen, sofa and table by a large chamber($24m^3$). The temperature and air humidity in the chamber are controlled to $25{\pm}1{\circ}C$ and $50{\pm}5%$ for this experiment. When the air change rate is $0.5hr^{-1}$, the background concentrations within the large chamber are below $50{\mu}g/m^3$ for TVOC, $5{\mu}g/m^3$ for HCHO and individual VOCs. The study is investigated the characterization of the chemical emission TVOC and HCHO concentrations and unknown VOCs from 6 furnitures.

  • PDF

Improvement of Indoor Air Quality by Coating of Indoor Materials of $TiO_2$ Photocatalyst Sol (이산화티탄 광촉매 졸(sol)의 실내환경 코팅에 의한 실내공기질 개선)

  • 양원호;김대원;정문호;양진섭;박기선
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.92-97
    • /
    • 2004
  • Three methods for VOCs emissions control in indoor air are reduction at the source, ventilation between indoor and outdoor, and removal. The best alternative should be to replace highly emitting sources with sources having low emissions, but the pertinent information on VOCs is not always available from manufactures. Other ways of improving indoor air quality are needed. It is to increase the outside fresh-air flow to dilute the pollutants, but this method would generally provide only a dilution effect without destruction in residence. An ideal alternative to existing technologies would be a chemical oxidation process able to treat large volumes of slightly contaminated air at normal temperature without additional oxidant such as ozone generator and ion generator. Photocatalytic oxidation(PCO) represents such a process. It is characterized by a surface reaction assisted by light radiation inducing the formation of superoxide, hydroperoxide anions, or hydroxyl radicals, which are powerful oxidants. In comparison with other VOCs removal methods, PCO offers several advantages. The purpose of this study was to explore the possibilities for photocatalytic purification of slightly contaminated indoor air by using visible light such as flurescent visible light(FVL). In this study, a PCO of relatively concentrated benzene using common FVL lamps was investigated as batch type and total volatile organic compounds(TVOCs) using a common FVL lamp and penetrated sun light over window. The results of this study shown the possibility of TiO$_2$ photocatalyst application in the area of indoor air quality control.

Emission Characteristics of Far-infrared Ray, Formaldehyde, Volatile Organic Compounds, and Deodorization Rate of Particleboard Prepared from Xylem Part of Broussonetia Kazinoki Sieb (닥나무 목질부로 제조된 파티클보드의 원적외선, 폼알데하이드, 휘발성유기화합물 방출 및 탈취율)

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • This study examined emission characteristics of far-infrared ray, formaldehyde, volatile organic compounds and deodorization rate of particleboard prepared at different target board densities and resin content levels, using the xylem part of Broussonetia Kazinoki Sieb. The deodorization rate increased, as the target density of board and resin content increased. Emission rates of the far-infrared ray and total volatile organic compounds (TVOCs) were 0.892~0.899, and $0.074mg/m^2{\cdot}h$ for particleboard prepared with the resin content of 13% and target density of $0.6g/cm^3$ while the deodorization rate was 80~90% for the same particleboard. The formaldehyde emission factor ranged from $0.004mg/m^2{\cdot}h$ to $0.006mg/m^2{\cdot}h$ for all particleboard fabricated at different resin content and target densities. These results indicate that particleboard prepared from the xylem part of Broussonetia Kazinoki Sieb have a potential as a building construction material.

Hazardous Organic Compounds Concentration of Newly Built School Classroom and Neurobehavioral Performance of Elementary School Children (신축학교 교실 실내공기 중 유해유기물질 농도와 초등학생의 신경행동기능에 관한 연구)

  • Kwaak, Hong-Taak;SaKong, Joon
    • Hwankyungkyoyuk
    • /
    • v.24 no.3
    • /
    • pp.18-25
    • /
    • 2011
  • This study was conducted to evaluate the effects of volatile organic compounds and formaldehyde of newly-built school classroom indoor air on the neurobehavioral functions of students. The elementary schools that were opened in September 2008(as of September 2008) was selected for newly-built school and the elementary school that were opened in March 2006 was selected for control group schools. The concentration of formaldehyde(HCHO), a hazardous organic compound that exists in the air of classrooms, exceeded the standard value of $108.2{\mu}g/m^3$ in newly-built schools while it was $60.8{\mu}g/m^3$ in control group schools, which is around 60% of the standard concentration. However, the concentration of the total volatile organic compounds(TVOCs) was $788.9{\mu}g/m^3$ and $756.1{\mu}g/m^3$ in newly-built schools and control group schools respectively, which are approximately two times higher than the standard concentration. In newly-built schools, the mean reaction time of additions and symbol digit, respectively 3,020ms and 2,398ms in pre-exposure were increased to 3,167ms and 2,514ms respectively in post-exposure. The difference of mean reaction time between pre and post exposure was 146.8 ms, or 4.6%, and 116.7ms, or 4.8%, respectively, showing statistically-significant increase of reaction time(p<0.05). On the contrary, the difference of reaction time of both tests were not statistically significant in the control group schools. These results showed that the neurobehavioral performance of newly-built schools students were affected by volatile organic compounds and formaldehyde of classroom indoor air.

  • PDF

Hazard Levels of Cooking Fumes in Republic of Korea Schools

  • Lee, Iu-Jin;Lee, Sang-Gil;Choi, Bo-Hwa;Seo, Hoe-Kyeong;Choi, Ji-Hyung
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.227-234
    • /
    • 2022
  • Background and Purpose: In 2021, lung cancer in school food workers was first recognized as an occupational cancer. The classification of the carcinogenicity of cooking fumes by International Agency for Research on Cancer (IARC) was based on Chinese epidemiological data. This study aimed to determine the hazard levels of school cooking fumes in Korea. Materials and Methods: Based on public school cafeterias in one area, 25 locations were selected for the survey according to the number per school type, ventilation states, and environmental pre-assessments of cafeterias. Two inside cooking areas using a heat source and one outside cooking area were selected as control measurement points. Measurements of CO, CO2, polycyclic aromatic hydrocarbons (PAHs), and total volatile organic compounds (TVOCs), including benzene, formaldehyde, and particulate matter (PM10, PM2.5, PM1, respectively), were taken. The concentrations and patterns of each substance in the kitchens were compared with the outdoor air quality. Result: Known carcinogens, such as the concentrations of PAHs, formaldehyde, TVOC (benzene), and particulate matter in school cooking fumes, were all detected at similar or slightly higher levels than those found outside. Additionally, substances were detected at relatively low concentrations compared to the Chinese cooking fumes reported in the literature. However, the short-term exposure to high concentrations of CO (or composite exposure with CO2) and PM2.5 in this study were shown. Conclusion: The school cooking fumes in South Korea was a relatively less harmful than Chinese cooking fumes, however short-term, high exposure of toxic substances can cause a critical health effect.

A Study on the Improvement of Comfortable Living Environment by Using real-time Sensors

  • KIM, Chang-Mo;KIM, Ik-Soo;SHIN, Deok-Young;LEE, Hee-Sun;KWON, Seung-Mi;SHIN, Jin-Ho;SHIN, YongSeung
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • Purpose: This study was conducted to identify indoor air quality in various living spaces using sensors that can measure noise, vibration, fine dust, and odor in real time and to propose optimal indoor air quality maintenance management using Internet of Things(IoT). Research design, data and methodology: Using real-time sensors to monitor physical factors and environmental air pollutants that affect the comfort of the residential environment, Noise, Vibration, Atmospheric Pressure, Blue Light, Formaldehyde, Hydrogen Sulfide, Illumination, Temperature, Ozone, PM10, Aldehyde, Amine, LVOCs and TVOCs were measured. It were measured every 1 seconds from 4 offices and 4 stores on a small scale from November 2018 to January 2019. Results: The difference between illuminance and blue light for each measuring point was found to depend on lighting time, and the ratio of blue light in total illumination was 0.358 ~ 0.393. Formaldehyde and hydrogen sulphide were found to be higher than those that temporarily attract people in an indoor office space that is constantly active, requiring office air ventilation. The noise was found to be 50dB higher than the office WHO recommendation noise level of 35 ~ 40dB. The most important factors for indoor environmental quality were temperature> humidity> illumination> blue light in turn. Conclusions: Various factors that determine the comfort of indoor living space can be measured with real-time sensors. Further, it is judged that the use of IoT can help maintain indoor air quality comfortably.

Development of a building materials database; Volatile organic compounds, formaldehyde emission rates and chemical compositions (건축자재의 오염물질 방출 데이터베이스 개발; 휘발성유기화합물, 폼알데하이드 방출강도 및 화학조성)

  • Yu, Young-Jae;Lee, Chul-Won;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • A material database has been developed for VOCs and formaldehyde emitted from building materials in this study. New classification system has been made by correlating the classification methods used in Korean Air Cleaning and Environmental Protection Agency. The developed databases include emission rates of TVOC, 5VOC and formaldehyde emitted from each building material. In addition, the databases can be used as an input variable to estimate indoor air quality (IAQ) using computer simulation since they also contain chemical component and general imformation. Box plot was used to do statistical analysis for emission rates of formaldehyde and TVOCs from different types of building materials. Also we confirmed the building materials worsening IAQ by categorizing the emission characteristic of different types of pollutants.