• Title/Summary/Keyword: TSPO Protein, Human

Search Result 2, Processing Time 0.016 seconds

Translocator Protein (18 kDa) Polymorphism (rs6971) in the Korean Population

  • Hyon Lee;Young Noh;Woo Ram Kim;Ha-Eun Seo;Hyeon-Mi Park
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2022
  • Background and Purpose: The expression of the 18-kDA mitochondrial translocator protein (TSPO) in the brain is an attractive target to study neuroinflammation. However, the binding properties of TSPO ligands are reportedly dependent on genetic polymorphism of the TSPO gene (rs6971). The objective of this study is to investigate the rs6971 gene polymorphism in the Korean population. Methods: We performed genetic testing on 109 subjects including patients with mild cognitive impairment, Alzheimer's disease (AD) dementia, non-AD dementia, and cognitively unimpaired participants. Magnetic resonance imaging scans and detailed neuropsychological tests were also performed, and 29 participants underwent 18F-DPA714 PET scans. Exon 4 of the TSPO gene containing the polymorphism rs6971 (Ala or Thr at position 147) was polymerase chain reaction amplified and sequenced using the Sanger method. The identified rs6971 genotype codes (C/C, C/T, or T/T) of the TSPO protein generated high-, mixed-, or low-affinity binding phenotypes (HABs, MABs, and LABs), respectively. Results: We found that 96.3% of the study subjects were HAB (105 out of 109 subjects), and 3.7% of the subjects were MAB (4 out of 109 subjects). 18F-DPA-714 PET scans showed nonspecific binding to the thalamus and brainstem, and increased tracer uptake throughout the cortex in cognitively impaired patients. The participant with the MAB polymorphism had a higher DPA714 signal throughout the cortex. Conclusions: The majority of Koreans are HAB (aprox. 96%). Therefore, the polymorphism of the rs6971 gene would have a smaller impact on the availability of second-generation TSPO PET tracers.

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.28 no.1
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.