• Title/Summary/Keyword: TSIS-CORSIM

Search Result 2, Processing Time 0.016 seconds

Cohort-based evacuation time estimation using TSIS-CORSIM

  • Park, Sunghyun;Sohn, Seokwoo;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1979-1990
    • /
    • 2021
  • Evacuation Time Estimate (ETE) can provide decision-makers with a likelihood to implement evacuation of a population with radiation exposure risk by a nuclear power plant. Thus, the ETE is essential for developing an emergency response preparedness. However, studies on ETE have not been conducted adequately in Korea to date. In this study, different cohorts were selected based on assumptions. Existing local data were collected to construct a multi-model network by TSIS-CORSIM code. Furthermore, several links were aggregated to make simple calculations, and post-processing was conducted for dealing with the stochastic property of TSIS-CORSIM. The average speed of each cohort was calculated by the link aggregation and post-processing, and the evacuation time was estimated. As a result, the average cohort-based evacuation time was estimated as 2.4-6.8 h, and the average clearance time from ten simulations in 26 km was calculated as 27.3 h. Through this study, uncertainty factors to ETE results, such as classifying cohorts, degree of model complexity, traffic volume outside of the network, were identified. Various studies related to these factors will be needed to improve ETE's methodology and obtain the reliability of ETE results.

Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System (Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석)

  • Jeong, Yeong-Je;Kim, Yeong-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • The operational effect of traffic signal control improvement was evaluated using the Two-Fluid Model. The parameters engaged in the Two-Fluid Model becomes food indicators to measure the quality of traffic flow due to the improvement of traffic signal operation. A series of experiment were conduced for the 31 signalized intersections in Uijeongbu City. To estimate the parameters in the Two-Fluid Model the trajectory informations of individual vehicles were collected using the CORSIM and Run Time Extension. The test results showed 35 percent decrease of average minimum trip time per unit distance. One of the parameters in the Two-Fluid Model is a measure of the resistance of the network to the degraded operation with the increased demand. The test result showed 28 percent decrease of this parameter. In spite of the simulation results of the arterial flow, it was concluded that the Two-Fluid Model is useful tool to evaluate the improvement of the traffic signal control system from the macroscopic aspect.