• Title/Summary/Keyword: TRNSYS Simulation

Search Result 129, Processing Time 0.023 seconds

A Study of renewable energy optimal design using the LCC analysis (LCC분석 기법을 활용한 신재생에너지 최적 설계 방안 연구)

  • Song, Ho-Yeol;Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In Korea ranking sixth out of The world's greenhouse gas emissions, all Korean public buildings have to implement obligatorily renewable energy systems for energy production to reduce the greenhouse gas emissions from the energy consumed in operation, maintenance and management of buildings. The optimum combination and application rates for each energy source emerge from analyzing the trend of previous studies and the energy consumption is simulated by using a dynamic energy simulation program and the initial investment costs, the energy costs, the maintenance costs, the replacement costs emerge based on the calculated result. The result show that the total life cycle cost of 100% gerthermal is the lowest with \ 2,105,974,344 on the analysis results.

Development and Performance Evaluation of Optimal Control logics for the Two-Position- and Variable-Heating Systems in Double Skin Facade Buildings (이중외피 건물 난방시스템의 발정제어 및 가변제어를 위한 최적로직의 개발 및 성능평가)

  • Baik, Yong Kyu;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.71-77
    • /
    • 2014
  • This study aimed at developing and evaluating performance of the two logics for respectively operating two-position- and variable-heating systems. Both logics control the heating system and openings of the double skin facade buildings in an integrated manner. Artificial neural network models were applied for the predictive and adaptive controls in order to optimally condition the indoor thermal environment. Numerical computer simulation methods using the MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation) were employed for the performance tests of the logics in the test module. Analysis on the test results revealed that the variable control logic provided more comfortable and stable temperature conditions with the increased comfortable period and the decreased standard deviation from the center of the comfortable range. In addition, the amount of heat supply to the indoor space was significantly reduced by the variable control logic. Thus, it can be concluded that the optimal control method using the artificial neural network model can work more effectively when it is applied to the variable heating systems.

Development of Integrated Control Methods for the Heating Device and Surface Openings based on the Performance Tests of the Rule-Based and Artificial-Neural-Network-Based Control Logics (난방시스템 및 개구부의 통합제어를 위한 규칙기반제어법 및 인공신경망기반제어법의 성능비교)

  • Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.97-103
    • /
    • 2014
  • This study aimed at developing integrated logic for controlling heating device and openings of the double skin facade buildings. Two major logics were developed-rule-based control logic and artificial neural network based control logic. The rule based logic represented the widely applied conventional method while the artificial neural network based logic meant the optimal method. Applying the optimal method, the predictive and adaptive controls were feasible for supplying the advanced thermal indoor environment. Comparative performance tests were conducted using the numerical computer simulation tools such as MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation). Analysis on the test results in the test module revealed that the artificial neural network-based control logics provided more comfortable and stable temperature conditions based on the optimal control of the heating device and opening conditions of the double skin facades. However, the amount of heat supply to the indoor space by the optimal method was increased for the better thermal conditioning. The number of on/off moments of the heating device, on the other hand, was significantly reduced. Therefore, the optimal logic is expected to beneficial to create more comfortable thermal environment and to potentially prevent system degradation.

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Interior Light Environment and Building Energy Performance Analysis of LED Lamp Installed in Office Building (LED램프를 적용한 사무소 건물의 실내조명환경 및 에너지 성능분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2010
  • In this paper, A new integrated energy simulation results of LED lamp are presented to use it effectively in the office buildings. Generally LED lamp has many advantages in comparison with a general lamp such as long life and no pollution problem like the mercury. It also is excellent in color rendering and small consumption electric power. However LED lamp has some disadvantages to compare to general fluorescent lamp. It is small light flux about 50[%] and narrow light distribution than fluorescent lamp. Therefore, to apply LED lamp in an office building, the illuminance distribution with an environment analysis and cooling, heating and light energy has to be analyzed. The purpose of this study is to analyze light environment, light, cooling and heating energy simulation in office building.

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

Analysis of the Energy Consumption in Underfloor Air Distribution System depending on Outdoor Air Intake Rates (외기 도입에 따른 바닥급기 시스템의 에너지 사용량 분석)

  • Kim, Dong-Hee;Huh, Jung-Ho;Cho, Dong-Woo;Yu, Ki-Hyung;Yu, Ji-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.826-831
    • /
    • 2006
  • In this paper, we discussed the energy performance of underfloor air distribution(UFAD) and overhead air distribution system according to outdoor air intake rates in a office building. For this, the laboratory(S lab.) is selected for measuring the thermal environments of UFAD system and overhead system. Based on the measured data, the TRNSYS simulation is used to evaluate the energy performance of UFAD system and the overhead system according to outdoor air intake rates. By increasing outdoor air intake rates from required outdoor air intake rates(100CMH) to maximum air intake rates, the energy savings of UFAD system comparing with overhead system are varied $15%{\sim}25.6%$ in summer, $12.8%{\sim}19%$ in fall/spring and not varied in winter(8%). As results of simulations on stratification height and cooling set temperature, the lower the stratification height and the higher cooling set temperature, the larger cooling energy savings of UFAD comparing with overhead system according to outdoor air intake rates.

  • PDF

A Comparative Analysis of Regional Energy Demand and Production in terms of Energy Sharing through PV/T and PV (PV/T와 PV 시설을 통한 열 공유 측면의 지역별에너지 수요량과 생산량 비교분석 연구)

  • Kwon, Hyuk-Min;Lee, Tae-Kyu;Kim, Jung-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.380-387
    • /
    • 2019
  • In recent years, solar energy PV/T research has been actively pursued by complementing solar heat acquisition and solar energy acquisition, and PV/T energy efficiency is generally excellent. In this study, the annual energy demand is calculated based on one building, and the energy production when PV / T installed on the roof and the energy production when PV are installed are compared and analyzed by simulation case. In conclusion, Busan which is the southern province in Korea, has the largest amount of energy generation, and introducing the concept of sharing surplus energy, excluding energy demand from generation. As a result, it can be supplied up to 3.3 households.

A Study on The Characteristics of Heat Pump Heating System Utilizing Heat Storage Tank (축열수조를 이용하는 열펌프식 난방의 특성에 관한 연구)

  • Kim H.K.;Lee G.Y.;Park M.S.;Hwang I.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.392-405
    • /
    • 1987
  • A study of appling solar assisted heat pump heating system to Korean climatic charac-teritics has been undertaken through computer simulation using TRNSYS (A Transient System Simulation Program). It is insufficient for heating system composed of each of solar and heat pump system to supply heat met with heating load. So SAHP (Solar Assisted Heat Pump) heating systems which combined solar system with heat pump system are analized using the standard weather data of Korea. And SAHP heating systems are categorized into the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. These combined system are better than each of solar and heat pump heating system in view of thermal performance, and parallel system is most effective among these combined systems.

  • PDF

Prediction of Greenhouse Energy Loads using Building Energy Simulation (BES) (BES 프로그램을 이용한 국내 대표적 대형온실의 에너지 부하 예측)

  • Lee, Sung-Bok;Lee, In-Bok;Homg, Se-Woon;Seo, Il-Hwan;Bitog, P. Jessie;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Han, Chang-Pyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.113-124
    • /
    • 2012
  • Reliable estimation of energy load inside the greenhouse and the selection of cooling and heating facilities are very important preceding factors to save energy as well as initial and maintenance costs of operating a greenhouse. Recently, building energy simulation (BES) technique to simulate a model similar to the actual conditions through a variety of dynamic simulation methods, and predict and analyze the flow of energy is being actively introduced and developed. As a fundamental research to apply the BES technique which is mainly used for analysis of general buildings, to greenhouse, this research designed four types of naturally-ventilated greenhouses using one of commercial programs, TRNSYS, and then compared and analyzed their energy load properties, by applying meteorological data collected from six regions in Korea. When comparing the greenhouse load of each region depending on latitude and topographical characteristics through simulation, Chuncheon had nearly 9~49 % higher heating load per year than other regions, but its annual cooling load was the reverse to it. Except for Jeju, 1-2W type greenhouses in five regions showed about 17 % higher heating load than a widespan type greenhouse, and 1-2W type greenhouses in Chuncheon, Suwon, Cheongju, Daegu, Cheonju and Jeju had 23 %, 20 %, 17 %, 16 %, 18 % and 20 % higher cooling load respectively than a wide span-type one. Glasshouse and vinyl greenhouse showed 8~11 % and 10~12 % differences respectively in heating load, while 2~10 % and 7~10 % differences in cooling load respectively.