• Title/Summary/Keyword: TRNSYS Program

Search Result 67, Processing Time 0.03 seconds

Analysis of Energy Performance & Energy Saving with Geothermal Heat Pump System Using TRNSYS Program in a Large Scale Shopping Store (TRNSYS 프로그램을 이용한 대형쇼핑매장 에너지성능해석 및 지열시스템을 도입하는 경우 에너지절약 특성분석)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • Energy consumption in buildings is currently a real problem. That is why both assessment of energy performance and effective energy management including renewable energy system are essential. Thus, this paper focuses on a case study to analyze the energy performance and cooling & heating energy saving of a large scale shopping store in Daejeon city. The reference building is simulated by using TRNSYS dynamic simulation tool to examine its annual energy consumption. For annual energy analysis of building, one year energy consumption is surveyed in the field. The related study is carried out in large scale shopping store to investigate the energy consumption and energy use trend of heating, cooling, hot water, lighting, ventilation, equipments and other. The evaluation of energy performance of the geothermal heat pump system installed in a large scale shopping store is also analyzed by TRNSYS tool. From simulation results, it evaluated that the geothermal heat pump system is effective energy savings method in large scale shopping store.

Application Study of Reinforcement Learning Control for Building HVAC System

  • Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.138-146
    • /
    • 2006
  • Recently, a technology based on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller generally requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the environment chamber experiment and a theoretical analysis was also conducted using TRNSYS program.

Performance Analysis of Solar Heating System for High Solar Fraction using TRNSYS (태양열 온수급탕 시스템의 TRNSYS 열성능 분석)

  • Sohn, Jin-Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • In this paper, performances of solar hot water supply systems are parametrically analyzed with the variations of solar collector area, slope of collector and volume of storage. All simulations are conducted by using TRNSYS computer program. Average solar fractions, collector efficiencies and temperatures of storage are investigated monthly as well as annually. For system analysis, the maximum value of monthly average solar fractions has a limitation of 90 percent. As a result, the designed solar thermal system with $6m^2$ collector area, $50^{\circ}$ slope and $0.36m^2$ storage volume could provide almost an annual average solar fraction of 72 percent. By increasing the storage volume to $0.42m^2$, the annual solar fraction of system increases up to 73 percent.

Development of the TRNSYS Simulation Modules for System Air-Conditioner and Its' Verification (TRNSYS 시뮬레이션을 통한 시스템 에어컨의 구현과 타당성 검증)

  • Ki, Hyun-Seung;Hong, In-Pyo;Park, Jun-Won;Kang, Ki-Nam;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.315-322
    • /
    • 2012
  • In these days, importance of HVAC system in office building is steadily growing in terms of thermal comfort and energy savings. As a energy efficient heating and cooling system, system air-conditioner which can be controlled distinctly and has a high COP is more widely adopted nowadays. However, the features and advantages of system air-conditioner were not reported well because system air-conditioner did not describe yet by conventional simulation methods such as TRNSYS, e-Quest, Energyplus, etc. In this study, by using the TRNSYS program which is able to show module implementation and building energy consumption analysis, system air-conditioner module will be proposed and validated through comparison between the simulation results and measurement results.

Study on Development of Subroutine based on TRNSYS for Unglazed Transpired Air Collector System (TRNSYS 기반 무창기공형 공기식 집열 시스템 부프로그램 개발에 관한 연구)

  • Park, J.U.;Lee, E.J.;Chung, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2003
  • UTAC(unglazed transpired air collector) system has unique advantage for space heating and tempering ventilation air over the conventional collector system such as flat plate and vacuum collector. UTAC can improve radiative and convective loss due to nonglazed component and enhanced plate surface configuration. and heating energy and its equivalent green house emission performance can be improved from the use of this like collector in building application. The Option D Calibration simulation approach of IPMVP(International Performance Measurement and Verification Protocol) in ESCO businesses has been recommended to use of the calibrated computer modules like these Energy-10. DOE2.1E and TRNSYS(transient system simulation). This study is to develop subroutine type-203 of TRNSYS15.2 program and appraise thermal performance of UTAC. With newely addeded subroutine type-203. 1) Thermal performance of unglazed transpired collector could be possible based on dimensionless variables such as efficiency and heat exchanger effectiveness. and 2) Assessement of energy consists of solar useful and insulation saving for UTAC could be possible.

Active Solar Heating System Design & Analysis Program (설비형 태양열시스템 설계분석 프로그램 개발)

  • Shin, U-Cheul;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2003
  • This study aims to develop the program for active solar heating system design & analysis. The program, named ASOLis, is consisted of three user's interface like as system input/output, library, and utilities and used TRNSYS as a calculation engine for the system analysis. ASOLis simplifies user's input data through the database and can design 37 different types of solar systems. Solar system is configurated by two separated parts "solar thermal collecting part" and "load supplying part". Due to the user-friendly layout, all design parameters can be changed quickly and easily for the influence on system efficiency. For the reliability, ASOLis compared with experimental result. As a result, ASOLis is expected to be used as a vital tool for the design and analysis of active solar heating system.

Analysis of Energy Consumption and Research on Energy Saving of Lighting and Coo1ing Energy of a Superstore (대형마트의 조명 및 냉방 에너지 분석 및 에너지 절감 연구)

  • Bae, Chang-Hwan;Kim, Young-Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2011
  • This study analyzes the current and after retrofit energy consumption of lighting and cooling system of a superstore in Seoul. Energy consumption data were measured and collected with a measurement system. Annual energy consumption was calculated using TRNSYS program. After replacing lighting and chiller with higher efficiencies, annual TOE consumption decreased from 1,066 before retrofit to 832 after retrofit, saving 234 TOE (22%) in total. Similarly, total annual $TCO_2$ consumption decreased from 2,214 to 1,721, reducing 493 $TCO_2$ (22%) during this pilot study.

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facilities (향온시설물에 대한 현열 및 잠열 에너지 회수시스템의 성능해석)

  • 박병규;김무근;김근오
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1057-1065
    • /
    • 2000
  • A sizing of sensible and latent energy recovery system with condensing heat exchanger is important to the design of a thermally controlled facilities. The transient system simulation program TRNSYS 14.2/IISiBat has been used to evaluate the energy consumptions of a thermally controlled facilities which consist of boiler, chiller and condensing heat exchanger, The boiler and chiller are selected based on the annual peak loads and controlled to maintain the setting temperature of $14~17^{\circ}C$. Simulation shows that the amount of sensible and latent energy recovered by heat exchanger is almost 20% of total heating load.

  • PDF

Verification Experiment and Calculation of Cooling Load for a Test Space (시험공간에 대한 냉방부하 실증실험 및 계산)

  • 유호선;현석균;김용식;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.641-651
    • /
    • 2003
  • In order to assess the reliability of a building energy simulation program (TRNSYS) from the standpoint of user, a set of verification experiment and calculation of cooling load for a test space is carried out. This work is a complement of the previous study that dealt with heating load for the same space. The test space is kept airtight to eliminate the source of uncertainties in modeling. A window-mounted, on/off controlled air-conditioner is used for cooling, whose performance has been established a priori. The calculation encompasses two models for evaluating cooling load in TRNSYS: energy rate control and temperature level control. Comparison of the total cooling loads obtained from different sets of experimental data enables to validate the measurements. The experimental result shows that the latent load is fairly large even in the absence of apparent air change in the space, which needs to be clarified. Each of hourly and daily accumulated sensible loads is compared between the experiment and two calculation models. Despite an inconsistency associated with solar irradiation, both of the models agree favorably with the experiment within a tolerance, illustrating their capability of properly predicting space thermal loads.

Heating and Hot Water Supply Energy Comparison of Medium Capacity and Multi Boilers System applied to Military Officer Housing (군간부 숙소에 적용된 중용량 및 멀티 보일러 시스템의 난방 및 급탕에너지 비교)

  • Kim, Min-Yong;Kim, Young Il;Chung, Kwang Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Heating and hot water supply energy consumption of medium and multi boiler systems applied to military officer housing are compared with in-situ experiment and TRNSYS dynamic simulation program. In a multiple boiler system, small capacity boilers are connected in parallel to meet the required capacity. For handling partial loads, medium capacity boiler relies on on-off control, while multi boiler adopts PI control. Since multi boiler has higher efficiency and better control strategy, the results show that energy consumption can be reduced significantly with the multi boiler system.