• Title/Summary/Keyword: TRITIUM

Search Result 286, Processing Time 0.035 seconds

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Adsorption of hydrogen isotopes on graphene

  • Erica Wu;Christian Schneider ;Robert Walz ;Jungkyu Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4022-4029
    • /
    • 2022
  • We investigated the possibility of using graphene for control of hydrogen isotopes by exploring adsorption, reflection, and penetration of hydrogen isotopes on graphene using molecular dynamics. Reflection is the dominant interaction when hydrogen isotopes have low incident energy. Adsorption rates increase with increasing incident energy until 5 eV is reached. After 5 eV, adsorption rates decrease as incident energy increases. At incident energies greater than 5 eV, adsorption rates increase with the number of graphene layers. At low incident energies (<1 eV), no isotopic effects on interactions are observed since the predominant interaction is derived from the force of π electrons. Between 1 eV and 50 eV, heavier isotopes exhibit higher adsorption rates and lower reflection rates than lighter isotopes, due to the greater momentum of heavier isotopes. Adsorption rates are consistently higher when the incident angle of the impacting atoms is smaller between 0.5 eV and 5 eV. At higher energies (>5 eV), larger incident angles lead to higher reflection and lower penetration rates. At high incident energies (>5 eV), crumpled graphene has higher adsorption and lower penetration rates than wrinkled or unwrinkled graphene. The results obtained in this research study will be used to develop novel nanomaterials that can be employed for tritium control.

Neutronics analysis of the ion cyclotron resonance heating antenna of the China Fusion Engineering Test Reactor

  • Gaoxiang Wang;Chengming Qin;Shanliang Zheng;Yongsheng Wang;Kun Xu;Huiqiang Ma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3236-3241
    • /
    • 2024
  • Ion cyclotron resonance heating (ICRH) is an important auxiliary heating method applied to the China Fusion Engineering Test Reactor, which can effectively heat the ions and electrons in plasma. Owing to the harsh nuclear environment, neutronic analyses are required to verify tritium self-sufficiency and neutron-shielding requirements. In this study, a neutronics analysis of the ICRH antenna was conducted using the COre and System integrated engine for Reactor Monte Carlo (cosRMC) code to estimate the neutron flux, radiation damage, nuclear heating, gas generation rate of key components, and tritium breeding ratio (TBR), providing data support for the subsequent optimization of the shielding design. In addition, the neutron flux of the coils around the antenna was calculated to prevent the entry of neutrons that damage the magnetic field coils through the gaps between the port plugs and antenna, and the shielding effects of the port-plug antenna on the surrounding components were analyzed. Finally, the results obtained using the cosRMC and MCNP codes were compared, which and presented good agreement, thus verifying the reliability of the neutronic analysis using the cosRMC code.

Influence of Adenosine and Magnesium on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 및 Magnesium의 영향)

  • Choi, Bong-Kyu;Yoon, Young-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.175-182
    • /
    • 1993
  • As it has been reported that the depolarization-induced ACh release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of endogenus adenosine as a modulator of hippocampal acetylcholine release in this study. Slices from the rat hippocampus were equilibrated with $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3Hz, $5\;V\;cm^{-1},$ 2ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. Adenosine, in concentrations ranging from $0.3\;to\;100\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without changing the basal rate of release. $DPCPX(1{\sim}10{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium release. And the effects of adenosine were significantly inhibited by $DPCPX(2{\mu}M)$ treatment. CPCA, a specific $A_2-agonist$, in concentration ranging from $0.3\;to\;30\;{\mu}M$ decreased evoked tritium outflow with increase of basal rate of tritium release, and these effects were also abolished by $DPCPX(2{\mu}M)$ pretreatment. But, $CGS(0.1{\sim}10{\mu}M)$, a recently introduced potent $A_2-agonist$, did not alter the evoked tritium outflow. When the magnesium concentration of the medium was reduced to 0 mM, there was no change in evoked ACh release by adenosine. In contrast, increasing the magnesium concentration to 4 mM, the inhibitory effects of adenosine were significantly potentiated. These results indicate that $A_1-adenosine$ heteroreceptor is involved in ACh-release in the rat hippocampus and the inhibitory effects of adenosine mediated by $A_1-receptor$ is magnesium-dependent.

  • PDF

Determination of Tritium in Spent Pressurized Water Reactor (PWR) Fuels (가압 경수로 사용후핵연료 중 삼중수소 분석)

  • Lee, Chang Heon;Suh, Moo Yul;Choi, Kwang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.381-387
    • /
    • 2004
  • To characterize chemically a spent pressurized water reactor (PWR) fuel, an analytical method for trace amounts of tritium ($^3H$) in it has been established. Considering the effective management of radioactive wastes generated through the whole experimental process and the radiological safety for analysts, a separation condition under which $^{14}C$ and $^3H$ can be sequentially recovered from a single fuel sample was optimized using simulated spent PWR fuel dissolved solutions. $^{14}CO_2$ evolved during dissolution of the spent PWR fuels with nitric acid was trapped in an aliquot of 1.5 M NaOH. $^{129}I_2$ which was volatilized along with $^{14}CO_2$ was removed using a silver nitrate-impregnated silica gel absorbent. $^3H$ remaining in the fuel dissolved solution as $^3H_2O$ was selectively recovered by distillation. Its recovery yield was 97.9% with a relative standard deviation of 0.9% (n=3). $^3H$ in a spent PWR fuel with burnup value of 37,000 MWd/MtU was analyzed, reliability of this analytical method being evaluated by standard addition method.

Environment isotope aided studies on river water and ground water interaction in the Han River basin (동위원소를 이용한 한강유역의 지하수와 지표수의 연관성에 관한 연구)

  • 안종성;김재성
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.245-252
    • /
    • 1983
  • Recently river water pollution in Korea is given rise to serious problem in aspect of crop production, drinking well, water contamination and etc. Under these urgent situations, it is prime importance to protect water resources from pollutants. An environmental isotope survey of the groundwater form the shallow alluvial and the underlying crystalline rock aquifer of the Han River Basin has been undertaken, Analysis of the data has I) confirmed the hypothesis that the groundwater from the metropolitan area is recharged from the river whereas that form the non-urbanized region of the Basin is replenished by the infiltrating precipitation; ii) shown that crystalline rock aquifers are recharged by the ground water form the overlying alluvium. Old groundwater is a group of wells with tritium values in the range of 0 to 2 TU. These low values indicate that the water sampled was recharged much ealier, at least a few decades, than the other groundwater samples of higher tritium content. The low values in this region may, in fact, reflect the effect of the impermeable clay layers which impede infilteration from the surface. Stable isotope evidence confirmed that a recharge in the karst area occurs at a significantly greater elevation than that to the alluvial aquifer. An analysis of the tritium level collected over an annual cycle suggests that the residence time of groundwater is probably not more than a few months. There does not appear to be any correlation between the trace level of Zn, Mn and Pb in the groundwater and the mechanism of the recharge.

  • PDF

Comparative Study of Tritium Analysis Method with High-Volume Counting Vial

  • Yoon, Yoon Yeol;Kim, Yongcheol
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.142-146
    • /
    • 2020
  • Background: Tritium (3H) analysis in groundwater was difficult because of its low activity. Therefore, the electrolytic enrichment method was used. To improve the detection limit and for performing simple analysis, a high-volume counting vial with the available liquid scintillation counter (LSC) was investigated. Further, it was compared with a conventional 20-mL counting vial. Materials and Methods: The LSC with the electrolytic enrichment method was used 3H analysis in groundwater. A high-volume 145-mL counting vial was compared with a conventional 20-mL counting vial to determine the counting characteristics of different LSCs. Results and Discussion: When a Quantulus LSC was used, the counting window between channels 35 and 250 was used. The background count was approximately 1.86 cpm, and the counting efficiency increased from 8% to 40% depending on the mixing ratio of the volume of sample and cocktail solution. For LSC-LB7, the optimum counting window was between 1 and 4.9 keV, which was selected by the factory (Hitachi Aloka Medical Ltd., Japan) by considering quenching using a standard external gamma source. The background count of LSC-LB7 was approximately 3.60 ± 0.29 cpm when the 145-mL vial was used and 2.22 ± 0.17 cpm when the 20-mL vial was used. The minimum detectable activity (MDA) of the 20-mL vial was greater for LSC-LB7 than for Quantulus. The MDA with the 145-mL vial was improved to 0.3 Bq/L when compared with the value of 1.6 Bq/L for the 20-mL vial. Conclusion: The counting efficiency when using the 145-mL vial was 27%, whereas it was 18% when using the 20-mL vial. This difference can be attributed to the vial volume. The figure of merit (FOM) of the 145-mL vial was four times greater than that of the 20-mL vial because the volume of the former vial is approximately seven times greater than that of the latter. Further, the MDA for 3H decreased from 1.6 to 0.3 Bq/L. The counting efficiency and FOM of LSC-LB7 was slightly less than those of Quantulus when the 20-mL vial was used. The background counting rate of the Quantulus was lower than that of the LSC-LB7.

Geochemical characteristics of a LILW repository I. Groundwater (중.저준위 방사성 폐기물 처분부지의 지구화학 특성 I. 지하수)

  • Choi, Byoung-Young;Kim, Geon-Young;Koh, Yong-Kwon;Shin, Seon-Ho;Yoo, Si-Won;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.297-306
    • /
    • 2008
  • This study was carried out to identify the characteristics of hydrochemistry controlling groundwater chemical condition in a repository site of Gyeongju. For this study, 12 bore holes of all monitoring bore holes in the study area were selected and total 46 groundwater samples were collected with depth. In addition, 3 surfacewater samples and 1 seawater sample were collected. For water samples, cations and anions were analyzed. The environmental isotopes(${\delta}^{18}O-{\delta}D$, Tritium, ${\delta}^{13}C,\;{\cdot}{\delta}^{34}S$) were also analyzed to trace the origin of water and solutes. The result of ${\delta}^{18}O\;and\;{\delta}D$ analysis showed that surface water and groundwater were originated from precipitation. Tritium concentrations of groundwater decreased with depth but high concentrations of tritium indicated that groundwater was recharged recently. The results of ion and correlation analysis showed that groundwater types of the study area were represented by Ca-Na-$HCO_3$ and Na-Cl-$SO_4$, which was caused by sea spray and water-rock interaction. Especially, high ratio of Na content in groundwater resulted from ion exchange. For redox condition of groundwater, the values of DO and Eh decreased with depth, which indicated that reducing condition was formed in deeper groundwater. In addtion, high concentration of Fe and Mn showed that redox condition of groundwater was controlled by the reduction of Fe and Mn oxides.

  • PDF

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

저형상비 토카막 중성자원에 기반한 핵변환로 형상 연구

  • Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.414.2-414.2
    • /
    • 2016
  • The optimal configuration of a transmutation reactor based on a low aspect ratio tokamak is determined using coupled analysis of tokamak systems and neutron transport. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on a neutron multiplication, a tritium-breeding ratio, and a power density. It is shown that a breeding blanket model has an impact on the radial build of a transmutation blanket. A burn cycle has to be determined to limit a fast neutron fluence of a plasma facing material below a radiation damage limit.

  • PDF