• Title/Summary/Keyword: TRISO particle

Search Result 32, Processing Time 0.018 seconds

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Properties of Chemical Vapor Deposited ZrC Coating Layer using by Zirconium Sponge Materials (지르코늄 스폰지를 원료로 사용하여 화학증착법으로 제조된 탄화지르코늄 코팅층의 물성)

  • Kim, Jun-Gyu;Choi, Yoo-Youl;Lee, Young-Woo;Park, Ji-Yeon;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.245-249
    • /
    • 2008
  • The SiC and ZrC are critical and essential materials in TRISO coated fuel particles since they act as protective layers against diffusion of metallic and gaseous fission products and provides mechanical strength for the fuel particle. However, SiC and ZrC have critical disadvantage that SiC loses chemical integrity by thermal dissociation at high temperature and mechanical properties of ZrC are weaker than SiC. In order to complement these problems, we made new combinations of the coating layers that the ZrC layers composed of SiC. In this study, after Silicon carbide(SiC) were chemically vapor deposited on graphite substrate, Zirconium carbide(ZrC) were deposited on SiC/graphite substrate by using Zr reaction technology with Zr sponge materials. The different morphologies of sub-deposited SiC layers were correlated with microstructure, chemical composition and mechanical properties of deposited ZrC films. Relationships between deposition pressure and microstructure of deposited ZrC films were discussed. The deposited ZrC films on SiC of faceted structure with smaller grain size has better mechanical properties than deposited ZrC on another structure due to surface growth trend and microstructure of sub-deposited layer.