• Title/Summary/Keyword: TRIGA Mark II Nuclear Research Reactor

Search Result 20, Processing Time 0.021 seconds

Experimental Determination of Differential Fast Neutron Spectra in a Reactor using Threshold Detectors

  • Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.280-293
    • /
    • 1972
  • The differential fast neutron spectra above 0.5 Mev at particular spatial positions in tile reactor(TRIGA MARK-II) core has been determined experimentally using several threshold activation detectors. The series expansion technique utilizing the concept of least squares optimization was used to obtain an approximate solution to the set of integral equations which are defined by the experimentally determined activation data. The influence of use of different weighting functions in the solution was analyzed in each measurement. To carry out the necessary mathematical calculations, a computer code for the UNIVAC 1106 digital computer has been prepared. Good agreement was achieved between the differential fast neutron spectra determined in this work and the computed flux determined independently using space-independent multigroup transport theory.

  • PDF

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou;A. Gruel;A. Lyoussi;C. Reynard-Carette;C. El Younoussi;B. El Bakkari;Y. Boulaich
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4447-4464
    • /
    • 2023
  • This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

Characterization of neutron spectra for NAA irradiation holes in H-LPRR through Monte Carlo simulation

  • Kyung-O Kim;Gyuhong Roh;Byungchul Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4226-4230
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II.

Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD) Core and Addition of New Fuel Elements

  • Craft, Aaron E.;Hilton, Bruce A.;Papaioannou, Glen C.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.200-210
    • /
    • 2016
  • The neutron radiography reactor (NRAD) is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA) reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS) is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM) standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D) = 125 is $5.96{\times}10^6n/cm^2/s$ with a $2{\sigma}$ standard error of $2.90{\times}10^5n/cm^2/s$. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

Separation of Radionuclide from Dismantled Concrete Waste (해체 콘크리트 폐기물로부터 방사성핵종 분리)

  • Min, Byung-Youn;Park, Jung-Woo;Choi, Wang-Kyu;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • Concrete materials in nuclear facilities may become contaminated or activated by various radionuclides through different mechanism. Decommissioning and dismantling of these facilities produce considerable quantities such as concrete structure, rubble. In this paper, the characteristics distribution of the radionuclide have been investigated for the effects of the heating and grinding test for aggregate size such as gravel, sand and paste from decommissioning of the TRIGA MARK II research reactor and uranium conversion plant. The experimental results showed that most of the radionuclide could be removed from the gravel, sand aggregate and concentrated into a paste. Especially, we found that the heating temperature played an important role in separating the radionuclide from the concrete waste. Contamination of concrete is mainly concentrated in the porous paste and not in the dense aggregate such as the gravel and sand. The volume reduction rate could be achieved about 80% of activated concrete waste and about 75% of dismantled concrete waste generated from UCP.

  • PDF

A New Method of Determination for the Trace Ruthenium in High Purity Palladium by Neutron Activation Analysis (방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법)

  • Lee, Chul;Yim, Yung-Chang;Uhm, Kyung-Ja;Chung, Koo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.191-197
    • /
    • 1971
  • Ruthenium content in highly purified palladium metal (99.9%) was determined by counting $^{105}Rh$ nuclide which was produced by $^{104}Ru(n,{\gamma};{\beta}^-)^{105}Rh$ nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK II reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively. $^{105}Rh$ was separated through anion and cation exchange resin columns. The ruthenium content was determined by comparing the $^{105}Rh$ activities, obtained from the palladium sample, with that from pure ruthenium standard. The detection limit of ruthenium by the present method is about 1 ppm of ruthenium in 10 mg of palladium, which is approximately 40 times more sensitive than that of the conventional radioactivation method which employs $^{102}Ru(n,{\gamma})^{103}Ru$ nuclear reaction.

  • PDF

Studies on the Preparation of Organic Compounds Labelled by $^{38}Cl$.(I) - Inorganic Yields of $^{38}$ Cl in Szilard Chalmer Reaction of Aromatic Chloro Derivatives

  • Kim, You-Sun
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.44-54
    • /
    • 1973
  • In order to clarify an effective procedure of labelling organic chloro compounds by $^{38}$ Cl, phenyl chloro derivatives(7 kinds), chloro nitrobenzenes(6 kinds), chloro anisoles(2 kinds), chloro anilines(3 kinds), chloro toluenes(3 kinds), benzyl cholorides(4 kinds), and other comparing samples(3 kinds) were irradiated in the TRIGA Mark-II research reactor and the inorganic $^{38}$ Cl yields were compared with the irradiation times after extracting the inorganic portion with an aqueous solution of alkali. It was found that the relative change between the inorganic $^{38}$ Cl yield and the irradiadiation time depends a great deal on the state of the sample, and a solid sample gave a lower and steady inorganic yield. The inorganic $^{38}$ Cl yield was decreased in the order of phenyl chloro derivatives < chloro tol uene$^{38}$ Cl yield of homo functional compounds and the number of chlorine atoms on the benzene ring. Generally, poly chloro substituted derivatives could give a higher yield than those of less chloro substituted. The results were discussed and the feasibility of these results for labelling purpose was criticized.

  • PDF