• Title/Summary/Keyword: TRF

Search Result 65, Processing Time 0.025 seconds

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA;Adi SANTOSO;Abdurrachman ABDURRACHMAN;Dina Alva PRASTIWI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.81-97
    • /
    • 2023
  • The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.

Reservoir Operation at Flood Time by Transformed Reservoir Flood(TRF) Reservoir Operation Method(ROM) (저수지 홍수변환법에 의한 홍수시 저수지 운영)

  • Gwon, O-Ik;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.105-113
    • /
    • 1998
  • Reservoir operation during flood period can be divided into two parts: One is for an operating policy during flood period to consider water conservation and flood control, and the other is for flood time on a random water level at flood forecasting, This study is concerned with reservoir operation and discusses general reservoir operation at flood time. Flood control has problems such as the uncertainty of hydrologic models. technical limitations and some constraints. Therefore, we may prepare the quantitative flood control methods based on the assured flood control storage for reservoir operation. Transformed Reservoir Flood(TRF) Reservoir Operation Method(ROM) is a procedure which determines the adequate releases with considering dam safety for flood inflows over non-damaging discharge. Based on the TRF ROM which was explained in our published paper. the study discusses the TRF ROM with additional investigations and the general reservoir operation rules at flood time.

  • PDF

Development of Multiparticulate-system Composed of Sustained Release-microspheres of Pseudoephedrin${\cdot}$HCI and Immediate Release-pellets of Terfenadine Using Solvent Evaporation Method and Spherically Agglomerated Crystallization Process (수용성 염산슈도에페드린과 난용성 테르페나딘의 구형정석조립법과 액중미립구법을 이용한 서방성펠렛 복합제제의 개발)

  • Rhee, Gye-Ju;Do, Ki-Chan;Kim, Eun-Hee;Park, Jong-Bum;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.305-311
    • /
    • 1997
  • Sustained release-microspheres and immediate release-pellets were prepared to develop a controlled release multiparticulate system containing both water soluble and insoluble dr ug. Pseudoephedrin.HCl (EPD) and terfenadine (TRF) were used as model drugs, respectively. Sustained release-EPD microspheres were prepared by solvent evaporation method using Eudragit RL or RS as a matrix combined with pH-insensitive film coating. Smaller EPD microspheres were obtained when smaller amount of Eudragit as a matrix material or larger amount of magnesium stearate as a dispersing agent was used. However the obtained microspheres did not show syfficient sustained release characteristics. About 97% of EPD was released after 1 hr irrespective of matrix material used. Subsequent coating of the microspheres with pH-insensitive polymer such as Eudragit RS or ethylcelulose (EC) resulted good sustained in 37.5, 73.3 and 92.0% release of encapsulated EPD in distilled water after 1, 3 abd 7 hr, respectively. It corresponds to mean dissolution time (MDT) of 2.3 hr, which is much larger than that of un-coated EPD microspheres (0.0048 hr). Immediate release TRF pellets were prepared by spherically agglomerated crystallization using Eudragit E as an inert matrix and methylene chloride as a liquid binder. Using Eudragit E alone as a matrix resulted in satisfactory physical properties of the pellets such as sphericity, surface texture and flowability, but led to slower release of TRF from pellets than un-modified TRF powder (MDT of 1.70 vs 1.43 hr in pH 1.2 dissolution medium). Introducing propylene glycol or sodium lauryl sulfate as an emulsifier brought about faster release of TRF from pellets (MDT of 1.14 and 0.95 hr, respectively). In conclusion, microencapsulation by solvent evaporation combined with film coating and spherically agglomerated crystallization were successfully utilized to prepare controlled release multiparticulate system composed of sustained release EPD-microspheres and immediate release TRF pellets.

  • PDF

Optimum Design of the Wolsong Tritium Removal Facility

  • Ahn, Do-Hee;Lee, Han-Soo;Chung, Hong-Suk;Song, Myung-Jae;Son, Soon-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.415-422
    • /
    • 1996
  • Tritium removal from tritiated heavy water in a PHWR is the most effective way in reducing workers' internal dose and radioactivity emissions from Wolsong NPP. The optimum design of the Wolsong TRF (Tritium Removal Facility) was carried out using an approximate short-cut method with an assumption that the TRF, designed to extract 8 MCi per year of elemental tritium from a heavy oater feedstream, uses Liquid Phase Catalytic Exchange (LPCE) front-end process and Cryogenic Distillation (CD) process.

  • PDF

Determination of Terrestrial Reference Frame using a Space Geodetic Technique (우주측지기술을 이용한 지구기준좌표계 결정)

  • Yoo, Sung-Moon;Cho, Jung-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.43-44
    • /
    • 2010
  • We present the analysis of space geodetic technique observation, Satellite Laser Ranging (SLR), to LAGEOS1 and LAGEOS2 for the definition of the Terrestrial Reference Frame (TRF). The data were analyzed in 7day arcs during about 9 years (2000/01/10 ~ 2008/12/29) using NASA Goddard's GEODYN/SOLVE II software. The comparison of the coordinates between ITRF2005 and TRF solutions determined in this work shows that there is no significant bias.

  • PDF

Optimal Timeslot Allocation for MF-TDMA Broadband Satelite Systems (MF-TDMA 광대역 위성시스템을 위한 최적 타임슬롯 할당 체계)

  • 장근녕;이기동;이호진
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.448-455
    • /
    • 2003
  • 본 논문에서는 MF-TDMA(Multi Frequency - Time Division Multiple Access)체계를 이용하는 광대역 위성 시스템의 리턴 링크를 대상으로 최저타임슬롯 할당 체계를 제시한다. 이를 위해 먼저 clear-sky RCST와 rain-fade RCST가 존재하고 복수의 서비스 및 지연 클래스가 존재하는 광대역 위성 시스템을 대상으로 MF-TDMA 체계 하에서 최적 타임슬롯 할당 체계를 제시한다. Phase 1에서는 clear-sky TRF타임슬롯들의 집합과 rain-fade TRF타임슬롯들의 집합을 결정하고, Phase 2에서는 각 RCST의 각 서비스/지연 클래스에 할당되는 타임슬롯의 수를 결정하고, Phase 3에서는 각 RCST의 각 서비스/지연 클래스에 할당된 타임슬롯들의 스케줄을 결정한다. 마지막으로 불균등 수요 데이터를 활용하여 제시한 최적 타임슬롯 할당 체계의 성능을 분석한다. 성능 분석 결과 제시한 최적 타임슬롯 할당 체계는 빠른 시간 내에 최적해 또는 최적해와 아주 가까운 해를 안정적으로 구한다는 사실을 확인할 수 있었다.

  • PDF

Shelterin Proteins and Cancer

  • Patel, Trupti NV;Vasan, Richa;Gupta, Divanshu;Patel, Jay;Trivedi, Manjari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3085-3090
    • /
    • 2015
  • The telomeric end structures of the DNA are known to contain tandem repeats of TTAGGG sequence bound with specialised protein complex called the "shelterin complex". It comprises six proteins, namely TRF1, TRF2, TIN2, POT1, TPP1 and RAP1. All of these assemble together to form a complex with double strand and single strand DNA repeats at the telomere. Such an association contributes to telomere stability and its protection from undesirable DNA damage control-specific responses. However, any alteration in the structure and function of any of these proteins may lead to undesirable DNA damage responses and thus cellular senescence and death. In our review, we throw light on how mutations in the proteins belonging to the shelterin complex may lead to various malfunctions and ultimately have a role in tumorigenesis and cancer progression.