• Title/Summary/Keyword: TREE GROWTH INCREMENT

Search Result 68, Processing Time 0.03 seconds

Individual Tree Growth Models for Natural Mixed Forests in Changbai Mountains, Northeast China

  • Lu, Jun;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.

A Study on the growth Characteristics of the landscape Trees in the Apartment Housing Areas (공동주택단지내 녹화용 수목의 생장특성)

  • 윤근영;안건광
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.337-346
    • /
    • 1996
  • The purpose of this study was to provide basic data of the growth characteristics of the landscape trees for better landscape planting design, construction and maintenance through the prediction of landscape change as time passes fly the analysis of survival rate, distribution patterns & increment percent of tree height, width, stem diameter (breast or surface) of widely used six tree species in Seongnam-si Eunhang-jugong apartment housing areas (8 years have passed after landsape alanting work). The main results can be summarized as followed. The tree survival rate of Pinus parviflora was the highest rate 89.2% than any other species, but Acer buergerianum showed the lowest survival rate at that of it 35.0%, & that of Picea abies 70.5 %, Metasequoia glyptostroboides 71.6%, Maknolia denudata 38.9%, Acer paimatum was 71.7%, As a whole, the tree survival rate of coniferous trees were relatively high. The tree height increment percent of the deciduous species wert relatively high. And that of Metasequoia glyptostroboides was the highest rate 11.61% than any other species, but that of Magnolia denudata was the lowest rate 5.59% than any other species. According to this results, the increment percent of trees in this apartment areas were comparatively lower than that of each related species planted in nursery area. And this results would be considered when landscape experts do landscape planting design, construction & maintenance. The distribution patterns of present tree size showed a Normal Distribution like any other biological features.

  • PDF

Accuracy Test of Coring for Measuring Annual Increment in Quercus mongolica, Kalopanax septemlobus, and Pinus densiflora

  • Park, Byung-Bae;Lim, Jong-Hwan;Park, Pil-Sun;Lee, Kyeong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.682-685
    • /
    • 2010
  • Coring has been widely used to measure annual increment in temperate forest ecosystems. This method is attractive because cores can be taken in just one visit. However, the accuracy of this method has not been tested. We expected coring to be less accurate than band dendrometers because of the eccentricity of tree growth. We studied 41 trees at the Long Term Experimental Forest in Mt. Gyebang, which has been monitored with band dendrometers since 1996. We collected two tree cores from the south and north face of each tree, 10 cm below the growth band. Increment cores were measured to 0.01 mm under stereomicroscopy. Annual growth from 1997 to 2006 was 3.2 mm $yr^{-1}$ for Quercus mongolica, 3.5 mm $yr^{-1}$ for Kalopanax septemlobus, and 5.7 mm $yr^{-1}$ for Pinus densiflora. The difference between the two methods was 10% for Q. mongolica, 14% for K. septemlobus, and 4% for P. densiflora. Compaction in the corer and shrinkage during drying decreased diameter increment by 5.6% and 1.0% on P. densiflora, respectively. This study suggests that the two methods for annual increment measurement are very similar, but species specificity should be concerned for direct comparison.

Estimation of the Effects of Air Pollutants on Tree Ring Growth in Black Pines (Pinus thunbergii)

  • Song, Young-Joo;Kim, Yoon-Dong;Choi, Kee-Ryong
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • Tree-ring width analysis has been used to assess the effects of air pollution on tree growth around industrial complexes. Our study was conducted to elucidate the effect of air pollutants on annual ring growth in black pines (Pinus thunbergii) of age 41$\sim$48 years around Ulsan Metropolitan City. The growth data were analyzed by multiple regression and the results are as follows: 1. The annual ring increment of black pines increased with tree age until age 40 years and then decreased gradually after age 40 years. 2. The increment of annual ring width of black pines was affected more by precipitation and evapotranspiration than air temperature. An annual ring decline appeared in the years 1968$\sim$1983, when annual ring indices below zero were observed. Decreased annual ring growth during this period may have been due to air pollution. 3. The heavy metal with the strongest effect on annual ring growth of black pines in the experimental stand was lead (Pb). The concentration of lead in the stand was estimated as over 6 ppm. 4. The technique of tree-ring width analysis may be useful for estimation of the extent of pollution in forest areas near industrial complexes.

Quantitative Analysis of Effects on Tree Growth of the Changes in Meteorological Environment around Imha Dam (임하댐 주변지역(周邊地域)의 기상환경(氣象環境) 변화(變化)가 수목생장(樹木生長)에 미치는 영향(影響)에 관한 정량적(定量的) 분석(分析))

  • Shin, Man Yong;Chun, Jung Wha
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.462-471
    • /
    • 1996
  • This study was conducted to investigate the effects of meteorological changes on tree growth due to the reservoir construction. First, climatic normals were estimated before and after the reservoir construction at the area of Imha, through the topoclimatological relationships. Secondly, the amount of meteorological changes was quantified based on the difference analysis of the climatic normals. Thirdly, the diameter increments of Pinus densiflora around Imha area were measured with increment borer. Sample trees were taken on the 6 points of 30m, 100m, 500m, 1km, 3km, and 5km from the reservoir, respectively. Finally, effects of meteorological changes on tree growth were investigated based on the analysis of tree ring increment patterns. Results showed that the growth of trees within the range of 1km from the reservoir had been increased, but the growth of ones out of 1km range had no relationship with meteorological changes after the reservoir construction. It seems that the diameter increment of trees grown near reservoir has been increased mainly due to the increased solar radiation in spring and the increased total amount of precipitation during growing season, compared with those before the reservoir construction. It is supposed, however, that the changes of monthly mean temperature has little effect on the tree growth because of its small amount of changes.

  • PDF

The Effects of CO2 Enrichment on the Radial Growth of Pinus densiflora

  • En-Bi CHOI;Hyemin LIM;Jeong-Wook SEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.289-299
    • /
    • 2024
  • The current study aimed to investigate the impact of CO2 enrichment on the width of annual tree rings, earlywood and latewood, and the area of annual growth of Pinus densiflora Siebold & Zucc. grown in open-top chamber (OTC). To this end, two CO2 enrichment cases were considered, namely 1.4 × increment (560 ppm in OTC-II) and 1.8 × (720 ppm in OTC-III) were compared with the current atmosphere (400 ppm in OTC-I). The CO2 enrichment conditions for a period of 12 years (2010-2021) were considered, and all measurements were done through image analysis. The study showed that the increment in CO2 concentrations positively affected the tree growth. The measurement data from the trees in OTC-III were considerably higher than those from OTC-I, whereas those from OTC-II were slightly higher than those from OTC-I. Decreasing patterns of the measured widths and area in 6-7 years after the beginning of CO2 enrichment was found for all the OTCs. These patterns were possibly due to changes in the physiological features, such as aging. The findings of the present study can have potential uses as fundamental data for forest management considering CO2 concentrations.

Development of Diameter Growth and Mortality Prediction Models of Pinus Koraiensis Based on Periodic Annual Increment (정기평균생장을 이용한 잣나무 임분의 흉고직경 생장예측모델 및 고사예측모델의 개발)

  • Kim, Seonyoung;Seol, Ara;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The objective of this study was to improve the performance of the existing individual-tree/distantindependent stand growth model in predicting the growth of Pinus koraiensis forest stands. The parameters of diameter growth and mortality prediction models were estimated using periodic annual increment (PAI) of permanent plots and the performance of the models were compared with that of the existing ones using mean anuual increment (MAI). The diameter growth model includes crown ratio, potential diameter growth and modifier to compute for competitions of trees of a stand. In deriving the mortality prediction model, the parameters were estimated based on PAI which was also estimated as the function of MAI due to the lacking of permanent plot data. The results of this study showed that the newly-estimated functions based on PAI provide more realistic patterns in diameter growth of individual trees. The new approach using PAI in mortality model seems to overcome the over-estimate problem by the MAI-based model in estimating mortality of stand trees.

Analysis of Flooding Damage by Heavy Rain on 'Fuji'/M.26 Apple Tree (집중호우에 의한 '후지'/M.26 사과나무의 침수 피해 분석)

  • Choi, Seong Yong;Huh, Min-Soon
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.362-366
    • /
    • 2001
  • This survey was carried out to investigate the effect of flooding by heavy rain on growth characteristics and disease incidence of 'Fuji'/M.26 mature apple tree in 1998 at Kyongbuk province. The surveyed regions were Andong, Uisung, and Gunwi area. The six orchards were selected from one area, totally 18 orchards were surveyed. The flooded depth of surveyed orchards was from 70 to 350 cm, and the flooded duration was from 6 to 72 h. Defoliation ratio, number of abnormal budding, and flowering per tree were increased along with the increment of flooded depth and duration. Rooting ratio was decreased rapidly with the increment of flooded duration, and dead root ratio was 16.2% in flooded orchards. Marssonia blotch (Diplocarpon mali), white rot (Botryosphaeria dothidea) of fruit, and phytophthora fruit rot (Phytophthora cactorum) incidence were increased in flooded orchards. The analysis results of pearson correlation coefficient among surveyed items showed that higher relationship of abnormal growth characteristics and increment of disease incidence of 'Fuji'/M.26 apple trees with flooded duration than with flooded depth. With these results, the flooded depth was found to be the main factor for the abnormal growth characteristics and disease incidences of 'Fuji'/M.26 apple trees.

  • PDF

Growth performance of planted population of Pinus roxburghii in central Nepal

  • Tiwari, Achyut;Thapa, Nita;Aryal, Sugam;Rana, Prabina;Adhikari, Shankar
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.264-274
    • /
    • 2020
  • Background: Climate change has altered the various ecosystem processes including forest ecosystem in Himalayan region. Although the high mountain natural forests including treelines in the Himalayan region are mainly reported to be temperature sensitive, the temperature-related water stress in an important growth-limiting factor for middle elevation mountains. And there are very few evidences on growth performance of planted forest in changing climate in the Himalayan region. A dendrochronological study was carried out to verify and record the impact of warming temperature tree growth by using the tree cores of Pinus roxburghii from Batase village of Dhulikhel in Central Nepal with sub-tropical climatic zone. For this total, 29 tree cores from 25 trees of P. roxburghii were measured and analyzed. Result: A 44-year long tree ring width chronology was constructed from the cores. The result showed that the radial growth of P. roxburghii was positively correlated with pre-monsoon (April) rainfall, although the correlation was not significant and negatively correlated with summer rainfall. The strongest negative correlation was found between radial growth and rainfall of June followed by the rainfall of January. Also, the radial growth showed significant positive correlation with that previous year August mean temperature and maximum temperature, and significant negative correlation between radial growth and maximum temperature (Tmax) of May and of spring season (March-May), indicating moisture as the key factor for radial growth. Despite the overall positive trend in the basal area increment (BAI), we have found the abrupt decline between 1995 and 2005 AD. Conclusion: The results indicated that chir pine planted population was moisture sensitive, and the negative impact of higher temperature during early growth season (March-May) was clearly seen on the radial growth. We emphasize that the forest would experience further moisture stress if the trend of warming temperatures continues. The unusual decreasing BAI trend might be associated with forest management processes including resin collection and other disturbances. Our results showed that the planted pine forest stand is sub-healthy due to major human intervention at times. Further exploration of growth climate response from different climatic zones and management regimes is important to improve our understanding on the growth performance of mid-hill pine forests in Nepal.

Effects of atmospheric environmental changes on annual ring growth of Cryptomeria japonica in Southern Korea

  • Luong, Thi-Hoan;Jang, Kyoung-Soo;Choi, Woo-Jung;Lee, Kye-Han
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Annual ring formation is considered a source of information to investigate the effects of environmental changes caused by temperature, air pollution, and acid rain on tree growth. A comparative investigation of annual ring growth of Cryptomeria japonica in relation to environmental changes was conducted at two sites in southern Korea (Haenam and Jangseong). Three wood disks from each site were collected from stems at breast height and annual ring growth was analyzed. Annual ring area at two sites increased over time (p > 0.05). Tree ring growth rate in Jangseong was higher than that in Haenam. Annual ring area increment in Jangseong was more strongly correlated with environmental variables than that in Haenam; annual ring growth increased with increasing temperature (p < 0.01) and a positive effect of $NO_2$ concentration on annual ring area (p < 0.05) could be attributed to nitrogen deposition in Jangseong. The correlation of annual ring growth increased with decreasing $SO_2$ and $CO_2$ concentrations (p < 0.01) in Jangseong. Variation in annual growth rings in Jangseong could be associated with temperature changes and N deposition. In Haenam, annual ring growth was correlated with $SO_2$ concentration (p < 0.01), and there was a negative relationship between precipitation pH and annual ring area (p < 0.01) which may reflect changes in nutrient cycles due to the acid rain. Therefore, the combined effects of increased $CO_2$, N deposition, and temperature on tree ring growth in Jangseong may be linked to soil acidification in this forest ecosystem. The interactions between air pollution ($SO_2$) and precipitation pH in Haenam may affect tree growth and may change nutrient cycles in this site. These results suggested that annual tree ring growth in Jangseong was more correlated with environmental variables than that in Haenam. However, the further growth of C. japonica forest at two sites is at risk from the long-term effects of acid deposition from fossil fuel combustion.