• 제목/요약/키워드: TRB(Tailor Rolled Blank)

검색결과 4건 처리시간 0.017초

핫스탬핑 공정에서 Tailor Rolled Blank 의 성형 특성을 고려한 성형한계 예측 (Limits Considering the Deformation Characteristics of Tailor Rolled Blank during Hot Stamping)

  • 김재홍;고대훈;서판기;김병민
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.351-356
    • /
    • 2014
  • The current study aims to predict the forming limits considering the deformation characteristics of tailor rolled blank(TRB) during hot stamping. The formability of TRB is affected by the TRB line orientation because elongations change due to the intrinsic geometry within the sheet. To evaluate the forming limits, Nakazima tests were conducted at elevated temperatures with different TRB line orientations. Forming limit diagrams(FLD) of TRB can be predicted by an interpolating equation based on the Nakazima test. Predicted FLDs were used in FE-simulations of a rectangular drawing. The predicted limit drawing height was compared with experimental results. The simulation results show good agreement with the experimental ones with an error range of 3%.

국부가열을 이용한 핫스탬핑 공정에서 Tailor Rolled Blank의 스프링백 예측 (Springback Prediction of Tailor Rolled Blank in Hot Stamping Process by Partial Heating)

  • 심규호;김재홍;김병민
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.396-401
    • /
    • 2016
  • Recently, Multi-strength hot stamping process has been widely used to achieve lightweight and crashworthiness in automotive industry. In concept of multi-strength hot stamping process, process design of tailor rolled blank(TRB) in partial heating is difficult because of thickness and temperature variation of blank. In this study, springback prediction of TRB in partial heating process was performed considering its thickness and temperature variation. In partial heating process, TRB was heated up to $900^{\circ}C$ for thicker side and below $Ac_3$ transformation temperature for thinner side, respectively. Johnson-Mehl-Avrami-Kolmogorov(JMAK) equation was applied to calculate austenite fraction according to heating temperature. Calculated austenite fraction was applied to FE-simulation for the prediction of springback. Experiment for partial heating process of TRB was also performed to verify prediction accuracy of FE-simulation coupled with JMAK equation.

AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발 (Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank)

  • 전성진;이문용;김병민
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

스탬핑용 고강도강 TRB 판재의 성형 특성 (The formability of high strength steel plate applied TRB for stamping)

  • 박현경;정지원;이경민
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.184-189
    • /
    • 2018
  • 최근에 안전기준과 환경규제 강화의 증대로 인해, 차체의 경량화에 대한 연구가 지속적으로 증가하고 있다. 고강도강의 응용은 가장 보편화 된 차체 경량화의 효과적인 방법 중에 하나이다. TWB(Tailor Welded Blank)는 다양한 두께와 용접을 사용하여 부분적인 강도와 경량화를 만족시키는 주요한 공법으로 활용되고 있다. 그러나 추가적인 용접공정으로 인해 판재간의 용접성이 중요하고 용접부에 대한 품질관리가 중요하다. 이점을 개선하기 위해, TRB(Tailor Rollded Blank)공법이 제안되었다. TRB는 롤러 압력을 조절하여 판재의 두께를 다르게 하고, 용접을 사용하는 TWB 공법보다 추가적인 용접공정이 없기 때문에 생산 비용적인 측면에서 훨씬 더 효율적이다. 본 연구에서는 Blank의 압연 영향을 조사하기 위해 스탬핑용 고강도강 TRB 판재의 성형성을 분석하였다. 성형성을 분석하기 위해, TRB 판재에서 0.8 mm, 1 mm의 두께를 갖는 부분을 채취하여 시험하였다. 시편에 새겨진 그리드마킹의 변형도를 분석하여 변형률을 조사하였고, 0.8 mm와 1.0 mm의 두께를 갖는 TRB 시편으로 Erichsen 시험을 한 후에 FE분석을 활용하여 성형성과 고유진동수를 비교하였다.