• Title/Summary/Keyword: TRAP (Total radical trapping antioxidant potential)

Search Result 22, Processing Time 0.016 seconds

Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism

  • Han, Jeong-Hwa;Lee, Hye-Jin;Choi, Hee Jeong;Yun, Kyung Eun;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of xenobiotics by conjugating substances with glutathione. The aim of this study is to assess the antioxidative status and the degree of DNA damage in the subclinical hypertensive patients in Korea using glutathione S-transferase polymorphisms. SUBJECTS/METHODS: We examined whether DNA damage and antioxidative status show a difference between GSTM1 or GSTT1 genotype in 227 newly diagnosed, untreated (systolic blood pressure $(BP){\geq}130mmHg$ or diastolic $BP{\geq}85mmHg$) subclinical hypertensive patients and 130 normotensive subjects (systolic BP < 120 mmHg and diastolic BP < 80 mmHg). From the blood of the subjects, the degree of the DNA damage in lymphocyte, the activities of erythrocyte superoxide dismutase, the catalase, and the glutathione peroxidase, the level of glutathione, plasma total radical-trapping antioxidant potential (TRAP), anti-oxidative vitamins, as well as plasma lipid profiles and conjugated diene (CD) were analyzed. RESULTS: Of the 227 subjects studied, 68.3% were GSTM1 null genotype and 66.5% were GSTT1 null genotype. GSTM1 null genotype had an increased risk of hypertension (OR: 2.104, CI: 1.38-3.35), but no significant association in GSTT1 null genotype (OR 0.982, CI: 0.62-1.55). No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and plasma TRAP, CD, lipid profiles, and GSH levels were observed between GSTM1 or GSTT1 genotype. Plasma levels of ${\alpha}-tocopherol$ increased significantly in GSTT1 wild genotype (P < 0.05); however, plasma level of ${\beta}-carotene$ increased significantly in GSTT1 null genotype (P < 0.01). DNA damage assessed by the Comet assay was significantly higher in GSTM1 null genotype than wild genotype (P < 0.05). CONCLUSIONS: These results confirm the association between GSTM1 null genotype and risk of hypertension as they suggest that GSTM1 null genotype leads to an increased oxidative stress compared with wild genotype.

Antihyperglycemic of Gleditschiae Spina Extracts in Streptozotocin-Nicotinamide Induced Type 2 Diabetic Rats (Streptozotocin-Nicotinamide로 유도된 제2형 당뇨모델 쥐에서 조각자(Gleditschiae Spina) 추출물의 항당뇨효과)

  • Park, Jae-Hee;Chu, Won-Mi;Lee, Jeung-Min;Park, Hae-Ryong;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.321-326
    • /
    • 2011
  • The aim of the present study was to investigate antihyperglycemic effect of Gleditschiae Spina (GS) in streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic rats. The rats were divided into four groups: normal control (NC), diabetic control (DC), diabetic rats supplemented with acarbose (AC, 4 mg/kg), and with GS ethanol extracts (GSE, 50 mg/kg). Weekly fasting blood glucose (FBG) for 10 weeks and oral glucose tolerance test (OGTT) at 10th week were monitored using glucose oxidase-peroxidase reactive strips. The FBG level was significantly reduced in AC group after 8 weeks and in GSE group at the end of period. The AUCs for the glucose response from OGTT and blood glucose level after sacrifice were significantly lower in the AC and GSE groups than the DC group. GSE supplementation significantly increased plasma total radical-trapping antioxidant potential (TRAP) in STZ-NA-induced diabetic rats, compared with DC group. The present study indicates that GSE could ameliorate type 2 diabetes and be comparable to acarbose, a standard hypoglycemic drug. Also, we suggest that GSE may possess antioxidant activity against the STZ-NA-induced oxidative stress.