• Title/Summary/Keyword: TRANSMITTER

Search Result 2,124, Processing Time 0.022 seconds

Capacitive compensation and consequent bandwidth expansion of 2.5 Gbps optical transmitter module (2.5Gbps 광송신 모듈의 용량선 보상 및 대역폭 확대)

  • 김성일;김상배;이해영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.216-222
    • /
    • 1996
  • Since many typical 2.5 Gbps optical transmitter modules use a 50$\Omega$ characteristic impedance, they require relatively high voltage and high power sources compared to the 25$\Omega$ module. However, simple replacement of the 50$\Omega$ internal matching impedance with 25$\Omega$ results in bandwidth reduction and consequent problem of data transmitter module is proposed in order to expand the modulator bandwidth. From the calculated resutls based on accurate 3-dimensional inductance analysis, we have found that the series parasitic inductance is a dominant element limiting the bandwidth and the insertion of a 2.5pF capacitor in parallel to the 20$\Omega$ matching resiter can increase the 3 dB bandwidth about 1.4GHz wider. The time-domain results show the rise time (140 psec) without the compensation is greatly improved to 63 psec with the compensation. This capacitive ocmpensation can be implemented easily and be compatible with common manufacturing process of the optical transmitter module.

  • PDF

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.

Algorithm for the Implementation of Network Interface Unit Transmitter in Broadband Wireless Local Loop (광대역 무선 가입자망(B-WLL)에서 가입자용 송신기 구현 알고리즘)

  • 최승남;황호선;김대진
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.41-44
    • /
    • 1999
  • In this paper we proposed the algorithm for the implementation of network interface unit transmitter and analyzed its performance in broadband wireless local loop. The symbol rate of upstream transmitter is variable since the channel bandwidth of upstream can vary. Assuming that master clock ( $f_{DAC}$) is fixed, the cubic interpolator of Farrow structure is used to increase the sample rate to master clock rate. Simulation shows that the signal to noise ratio is about 54~55 dB and spurious signal power of upstream transmitter is less than 45 dB.B.

  • PDF

Broadband Analog Optical Transmitter using Feedforward Compensation Circuit (피드포워드 보상회로를 적용한 광대역 광송신기의 특성)

  • Jang Joon-Woo;Choi Woon-Kyung;Choi Young-Wan;Moon Yon-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.15-18
    • /
    • 2006
  • We have proposed a broadband analog feedforward optical transmitter using a wideband $180^{\circ}$ hybrid coupler instead of conventional frequency-sensitive phase shifter with the narrow bandwidth property using a wideband $180^{\circ}$ hybrid coupler, the wide-band linearization technique enhances the linearity of the feedforward optical transmitter. In two-tone cases, the $3^{rd}-IMD$ products was enhanced more than 10 dB in 385 MHz range(1.375$\sim$l.76 GHz).

  • PDF

Improved Transmitter Power Efficiency using Cartesian Feedback Loop Chip

  • Chong, Young-Jun;Lee, Il-Kyoo;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • The Cartesian loop chip which is one of key devices in narrow-band Walky-Talky transmitter using RZ-SSB modulation method was designed and implemented with 0.35 Um CMOS technology. The reduced size and low cost of transmitter were available by the use of direct-conversion and Cartesian loop chip, which improved the power efficiency and linearity of transmitting path. In addition, low power operation was possible through CMOS technology. The performance test results of transmitter showed -23 dBc improvement of IMD level and -30 dEc below suppression of SSB characteristic in the operation of Cartesian loop chip (closed-loop). At that time, the transmitting power was about 37 dBm (5 W). The main parameters to improve the transmitting characteristic and to compensate the distortion in feed back loop such as DC-offset, loop gain and phase value are interfaced with notebook PC to be controlled with S/W.

25-Gb/s Optical Transmitter with Si Ring Modulator and CMOS Driver

  • Rhim, Jinsoo;Lee, Jeong-Min;Yu, Byung-Min;Ban, Yoojin;Cho, Seong-Ho;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.564-568
    • /
    • 2014
  • We present a 25-Gb/s optical transmitter composed of a Si ring modulator and CMOS driver circuit. The Si ring modulator is realized with 220-nm Si-on-insulator process and the driver circuit with 65-nm CMOS process. The modulator and the driver are hybrid-integrated on the printed circuit board with bonding wires. The driver is designed so that the parasitic bonding wire inductance provides enhanced driver bandwidth. The transmitter successfully demonstrates 25-Gb/s operation.

A CMOS Outphasing Transmitter Using Two Wideband Phase Modulators

  • Lee, Sung-Ho;Kim, Ki-Hyun;Song, Jae-Hoon;Lee, Kang-Yoon;Nam, Sang-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • This paper describes a CMOS outphasing transmitter using two wideband phase modulators. The proposed architecture can simplify the overall outphasing transmitter architecture using two-point phase modulation in phase-locked loop, which eliminates the necessity digital-to-analog converters, filters, and mixers. This architecture is verified with a WCDMA signal at 1.65 GHz. The prototype is fabricated in standard 130 nm CMOS technology. The measurement results satisfied the spectrum mask and 4.9% EVM performance.

Design and Fabrication of 1.2GHz range RF Transmitter and Receiver for Bi-directional Capsule Endoscopes (양방향 캡슐형 내시경용 1.2GHz 대역 RF 송수신기 설계 및 제작)

  • 장경만;문연관;류원열;윤영섭;조진호;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.81-85
    • /
    • 2003
  • The Bi-directional Wireless Capsule endoscope con sists of CMOS Image sensor, FPGA, LED, Battery, DC to DC Converter, Transmitter, Receiver and Antennas. The RF transmitter at 1.2GHz range is designed and fabricated with 10 mm(diameter)x1.6 mm(thickness) dimension considering the maximum permission exposure(MPE), system size, power consumption, linearity and modulation method. The fabricated RF receiver at 400MHz range can demodulate the external signals so as to control the behavior of CMOS image sensor. four LEDs and Transmitter.

  • PDF

Characteristics for 40Gb/s EAM Optical Transmitter (40Gb/s EAM 광송신기 특성)

  • 방준학;이정찬;조현우;고제수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.817-820
    • /
    • 2002
  • In this letter, we developed a 400Gb/s optical transmitter using an electroabsorption modulator and measured its characteristics. As a result, the extinction ratio, the output power and the wavelength are varied while DC bias voltage and temperature of an electroabsorption modulator are changed. Based upon these experimental results, a design of 400Gb/s optical transmitter can be optimized.

  • PDF