• Title/Summary/Keyword: TPR/TPO

Search Result 18, Processing Time 0.021 seconds

Redox Property of Transition Metal Oxides in Catalytic Oxidation (TPR/TPO 실험기법을 이용한 전이금속산화물의 산화-환원 특성 연구)

  • Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1161-1168
    • /
    • 1999
  • The redox property of oxide materials of the 3rd period transition metals(Cr~Zn), V, Mo, and W was studied with temperature-programmed reduction/temperature-programmed oxidation(TPR/TPO) experiment. The peak temperatures of TPO spectra were equal to or lower than those of TPR spectra. And the peak shapes of TPO spectra were broader than those of TPR ones. The activation energies of TPR/TPO for the oxides of the 3rd period transition metals showed in the range of 33~149 kJ/mol, while for the oxides of V, Mo, and W, they showed relatively higher values. The change of activation energies of TPR/TPO with various metal oxides showed a similar trend to the change of their metal-oxygen bond strengths. The change of activation energies of o-xylene oxidation for various metal oxides was proportional to the difference (${\Delta}E_a$) between the activation energy of TPR and that of TPO. From these results, we concluded that the oxidation of o-xylene over various metal oxide catalysts follows the Mars-van Krevelen mechanism including the surface reduction-oxidation of the metal oxide itself.

  • PDF

Redox Property of Vanadium Oxide and Its Behavior in Cataltic Oxidation

  • 김영호;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1457-1463
    • /
    • 1999
  • Structure and their redox property of the vanadium oxides prepared by decomposing NH₄VO₃ at various temperatures were studied by XRD, SEM, XPS, and temperature programmed reduction/temperature programmed oxidation (TPR/TPO) experiment. All TPR profiles have two sharp peaks in the temperature range 650-750℃, and the area ratio of the two sharp peaks changed from sample to sample. There were three redox steps in TPR/TPO profiles. The oxidation proceeded in the reverse order of the reduction process, and both the reactions proceeded via quite a stable intermediates. The changes of the morphological factor $(I_{(101)}/I_{(010)})$, the ratio of $O_{1S}$ peak area (O$_{1S}$( α)/O$_{1S}$( β)) in the XPS results, and the ratio of hydrogen consumption in TPR profiles with various vanadium oxides showed the distinct relationship between the structural property and their redox property of vanadium oxides. The change of the specific yield of phthalic anhydride with various vanadium oxides showed a very similar trend to those of the peak area ratio in TPR profiles, which meant that the first reduction step related to the partial oxidation of o-xylene on the vanadium oxide catalyst.

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Redox Property of the Supported Fe2O3 and WO3 with TPO/TPR (TPO/R를 이용한 [Fe2O3, WO3]/지지체의 산화, 환원 특성 연구)

  • Kim, Jae-Ho;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Young-Ho;Kim, Chang-Hee;Cho, Won-Chul;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both $CO_2$ capture and hydrogen production. In this study, redox property of $Fe_2O_3$ and $WO_3$ supported with $ZrO_2$ and $MgAl_2O_4$ were studied with temperature programmed oxidation/reduction (TPO/R) experiment. All metal oxides were prepared by ball mill method. Metal oxides supported with $ZrO_2$ showed the good redox property in TPO and TPR tests. Reduction behavior was matched well the theoretical reduction mechanism. Metal oxides supported with $MgAl_2O_4$ formed a solid solution ($MgFe_{0.6}Al_{1.4}O_4$, $MgWO_4$). $Fe_2O_3$ showed more narrow reaction range and lower reaction temperature than $WO_3$.

The investigation of characteristics of CuOx/SnO2-ZrO2 catalysts for toluene oxidation (톨루엔 산화에 의한 CuOx/SnO2-ZrO2 촉매의 특성고찰)

  • Kim Hye-Jin;Choi Sung-Woo;Lee Chang-Soep
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.669-674
    • /
    • 2005
  • Catalytic combustion of toluene was investigated on $CuOx/SnO_2-ZrO_2\;CuOx/SnO_2\;CuOx/ZrO_2$ catalysts prepared by impregnation. Characteristics of catalysts loaded on binary support and single support were observed by TPR, TPO, XRD, XPS techniques. The results on catalytic combustion showed that binary supports improve the activity of copper in the combustion of toluene. The reason for high catalytic activity on toluene combustion of $CuOx/SnO_2-ZrO_2$ catalyst was ascribed to oxidation$\cdot$reduction activity at low temperatures and stability of oxidation state after reduction.

Toluene Catalytic Oxidation by Manganese-Cerium Bimetallic Catalysts (Mn-Ce 복합 산화물에 의한 톨루엔 촉매 산화)

  • Cheon Tae-Jin;Choi Sung-Woo;Lee Chang-Soep
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.427-433
    • /
    • 2005
  • Activity of manganese oxide supported on ${\nu}-Al_2O_3$ was increased when cerium was added. Also, cerium-added manganese oxide on ${\nu}-Al_2O_3$ was more effective in oxidation of toluene than that without cerium. XRD result, it was observed that $MnO_2+CeO_2$ crystalline phases were present in the samples. For the used catalyst, a prominent feature has increased by XPS. TPR/TPO profiles of cerium-added manganese oxide on ${\nu}-Al_2O_3$ changed significantly increased at a lower temperature. The activity of $18.2 wt{\%}\;Mn+ 10.0 wt{\%}\;Ce/{\nu}-Al_2O_3$ increased at a lower temperature. The cerium added on the manganese catalysts has effects on the oxidation of toluene.

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

Redox reaction of Fe-based oxide mediums for hydrogen storage and release: cooperative effects of Rh, Ce and Zr additives (수소 저장 및 방출을 위한 Fe 계 산화물 매체의 환원-산화 반응: Rh, Ce 및 Zr 첨가제의 협동 효과)

  • Lee, Dong-Hee;Park, Chu-Sik;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.189-198
    • /
    • 2008
  • Cooperative effects of Rh, Ce and Zr added to Fe-based oxide mediums were investigated using temperature programmed redox reaction (TPR/TPO) and isothermal redox reaction in the view point of hydrogen storage and release. As the results of TPR/TPO, Rh was a sale additive to remarkably promote the redox reaction on the medium as evidenced by the lower highest peak temperature, even though its addition was to accelerate deactivation of the mediums due to sintering. On the other hand, Ce and Zr additives played an important role to suppress deactivation of the medium in repeated redox cycles. The medium co-added by Rh, Ce and Zr (FRCZ) exhibited synergistic performance in the repeated isothermal redox reaction, and the amount of hydrogen produced in the water splitting step at 623 K was highly maintained at ca. $17\;mmol{\cdot}g^{-1}-Fe$ during three repeated redox cycles.

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

Characteristics of CO2 Conversion Using Cobalt Ferrite Powders (코발트계 페라이트 분말을 이용한 이산화탄소 전환특성)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1008-1014
    • /
    • 2012
  • The amount of domestic carbon dioxide emissions is more than 600 million tons/year. The emitted $CO_2$ should be captured and stored, however, suitable storage sites have not been found yet. A lot of researches on the conversion of captured carbon dioxide to useful carbon source have been conducted. The purpose of this study is to convert stable carbon dioxide to useful resources using less energy. For this purpose reducing gas and metallic oxide (activator) are required. Hydrogen was used as reducing gas and cobalt ferrite was used as activator. Considering that activator has different physical properties depending on synthesis methods, activator was prepared by hydrothermal synthesis and solid method. Decomposition characteristics of carbon dioxide were investigated using synthesized powders. Temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA) device were used to observe the decomposition characteristics of carbon dioxide. Activator prepared by solid method with 5 and 10 wt% CoO content showed an excellent performance. In TGA experiments with samples prepared by the solid method, reduction by hydrogen was 29.0 wt% and oxidation by $CO_2$ was highest in 27.5 wt%. 95% of adsorbed $CO_2$ was decomposed with excellent oxidation-reduction behaviors.