• Title/Summary/Keyword: TOTAL NITROGEN(TN)

Search Result 345, Processing Time 0.016 seconds

The Nitrogen Behavior and Budget in Lake Paldang (팔당호의 질소거동과 수지)

  • Lee, Jangho;Park, Hae-Kyung;Lee, Kyoo;Kim, Eunmi
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • We studied the nitrogen behavior and budget of Lake Paldang from March to December 2008. The particulate nitrogen (PN) concentrations ranged from 7 to 13% of the total nitrogen concentration (TN) in the stream inflows, the downstream outflow, and the lake water. The nitrate nitrogen ($NO_3-N$) concentration ranged from 67 to 78% of the TN. In the three rivers of Lake Paldang, Gyeongan River (In3 site) had the highest average of the TN, 5.037 mgN/L, but North Han River (In2 site) had the lowest average TN, 1.683 mgN/L. South Han River (In1 site) had the average TN of 2.399 mgN/L. In the dam discharge, TN showed the average 2.063 mgN/L. In the lake water, L4 site (Gyeongan River area) had the highest average TN, 3.781 mgN/L, but L3 site (North Han River) had the lowest average TN, 1.587 mgN/L. Total input of nitrogen loads to Lake Paldang was about 30,875 ton/year in 2008. Inflow rivers contributed 30,643 ton/year (South Han River: 18,111 ton/year (59%), North Han River: 11,333 ton/year (37%), and Gyeongan River: 1,199 ton/year (4%)). The atmospheric deposition had 135 ton/year, the nitrogen release from the bottom sediments had 88 ton/year, and macrophytes had 9 ton/year. Total output of nitrogen loads from Lake Paldang was about 31,256 ton/year. The downstream from dam contributed 29,877 ton/year, and the sediment deposition was 1,379 ton/year.

Nutrient Behavior in an Upland Field of Cabbage Adjacent to the River (하천변 양배추 밭에서의 영양물질의 거동)

  • Song, Chul-Min;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to investigate the dynamics of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in outflow from a cabbage farmland in a mixed land-use watershed. The TN concentrations in groundwater showed twice peaks in late July 2006 and late March 2007 (3.8, 4.7 mg/L, respectively), when it rained shortly after fertilizer application, indicating that nitrogen leaching is greatly influenced by fertilization and rainfall. The mean concentrations of TN and $NO_3$-N in surface water were not significantly higher than those in groundwater, while the mean concentrations of TP and $PO_4$-P in surface water were significantly (p < 0.05) were higher than those in groundwater. The TN concentrations in groundwater were generally higher than those in surface water during fertilization and early growing season due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in groundwater were always lower than those in surface water due to the sorption of particulate phosphorous by soil. The ratio of TN load in baseflow to that in total TN load (39 %) was much greater than the TP ratio (7 %), suggesting that baseflow contribute to nitrogen export. Therefore, proper fertilization management should be taken to reduce nitrogen load through baseflow.

The Effect of Reject Water on the Water Quality of Effluent from S Sewage Treatment Plant (S 하수처리장 반류수가 방류수 수질에 미치는 영향)

  • Kim, Mi-Ran;Kim, Kyoung-Hee;Park, Hae-Sik;Kang, Dong-Hyo;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2010
  • To acquire preliminary data for the control of total nitrogen (TN) in S sewage treatment plant, which processes merging food waste and sewage, the effect of reject water on the total nitrogen in the effluent was examined in this study. Water quality data for the plant during the winter period were applied to calculate the mass balance. It was calculated that at least more than 231 kg/d TN should be removed to control the TN concentration in the effluent. Assuming 18 ppm as the goal TN concentration in the effluent, about 941 kg/d TN should be removed from this plant. Approximately 10% more TN should be removed than at present to achieve this result. It was observed that dewatering the filtrate had a considerably greater effect on the total nitrogen in the effluent than the reject waters. The dewatered filtrate contained 1,399kg/d TN. The contribution of the dewatered filtrate to the TN concentration in the effluent was 0.183, which was 7 to 23 times greater than the other reject waters. In addition, the amount of total nitrogen from the reject water, with the exception of the dewatering filtrate, was lower than the amount of TN that should be removed from S sewage treatment plant. Therefore, it was concluded that one of the most effective methods for controlling the TN concentration in effluent was the removal of the TN contained in the dewatering filtrate.

Stoichiometric Study for Nitrogen Removal in Anoxic-oxic Process (무산소-산소 공정에서 양론적 질소제거 연구)

  • Lee, Byung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1222-1227
    • /
    • 2005
  • Optimal sludge recycling ratio for maximum total nitrogen(TN) removal efficiency was calculated stoichiometrically using nitrification and denitrification reaction with given influent water qualities in anoxic-oxic process which was one of the popular nitrogen removal system. The water quality items for stoichiometric calculation were ammonia, nitrite, nitrate, alkalinity, COD, and dissolved oxygen which could affect nitrification and denitrification. Optimal sludge recycling ratio for maximum TN removal efficiency was expressed by those five influent water qualities. TN concentration calculated stoichiometrically had kept good relationship with reported TN concentration in each tank and final effluent. In addition, it was possible to expect the TN concentration in final effluent by stoichiometric calculation within ${\pm}5.0\;mg/L$.

Distribution Characteristics of Total Nitrogen Components in Streams by Watershed Characteristics (유역특성에 따른 하천에서의 존재형태별 질소 분포 특성 비교)

  • Park, Jihyoung;Sohn, Sumin;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.503-511
    • /
    • 2014
  • The temporal and spatial analyses of total nitrogen (TN) fractionation were conducted in order to understand 1) total nitrogen components in streams and 2) their patterns in rainy and dry seasons. The result showed that the concentration of nitrogen components in stream water was lower in non-urban area and getting higher in urban area. Dissolved total nitrogen (DTN) was 95~97.7% of total nitrogen in streams, and the proportion of dissolved organic nitrogen (DON) and ammonia nitrogen ($NH_3-N$) was higher with increasing urban area. The concentration of total nitrogen and nitrate nitrogen ($NO_3-N$) were highest in winter among four seasons. The result was showed that concentration of $NH_3-N$ was same variation as concentrations of TN and $NO_3-N$ in urban-rural complex and urban areas, except rural areas. During rainy season, concentrations of particulate organic nitrogen (PON) and $NH_3-N$ increased in rural areas and decreased in both urban-rural complex and urban areas. Correlation between total nitrogen components and land uses was positively correlated with site > paddy, and negatively correlated with forest. The variation of total nitrogen concentration was determined by $NO_3-N$ in non-urban areas, by $NO_3-N$ and $NH_3-N$ in urban-rural complex and by $NH_3-N$ in the urban areas.

The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia

  • Tolessa, Terefe;Senbeta, Feyera
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • Background: Deforestation and degradation are currently affecting the ecosystem services of forests. Among the ecosystem services affected by deforestation and degradation are the amount of soil organic carbon (SOC) and total nitrogen (TN) stored in forest soils which have greater impacts in global climate change. This study aimed at examining the amount of SOC and TN in the forest fragments which were separated from the continuous tracts of forests of Jibat and Chillimo through fragmentation processes over four decades. Methods: We have sampled soils from 15 forest fragments of Chillimo and Jibat in the central highlands of Ethiopia. The soil samples obtained in two separate soil depths (0-30 and 30-60 cm) were bulked, dried, and sieved for analysis. Results: Our results have shown that the two sites (Jibat and Chillimo forest fragments) differed in their SOC and TN contents. While the values for Jibat were found to be 29.89 Mg/ha of SOC and 2.84 Mg/ha for TN, it was 14. 06 Mg/ha of SOC and 1.40 Mg/ha for TN for Chillimo. When all forest fragment soil samples were bulked together, Jibat site had twice the value of SOC and TN than Chillimo. When disaggregated on the basis of each fragments, there existed differences in SOC (1.86 Mg/ha and 42.15 Mg/ha) and TN (0.24 Mg/ha and 4.23 Mg/ha) values. Among the forest fragments, fragment four ($F_4$) had the highest Relative Soil Improvement Index (RSII) value of 3826.82% and fragment fifteen ($F_{15}$) had the lowest RSII value (726.87%) which indicated that the former had a better quality of soil properties than the latter. Conclusion: SOC and TN differed across sampled fragments and sites. Variations in soil properties are the reflections of inherent soil parent material, aboveground vegetation, human interferences, and other physical factors. Such differences could be very important for identifying intervention measures for restoration and enhancing ecosystem services of those fragments.

Effective Total Nitrogen (TN) Removal in Partially Aerated Biological Aerated Filter (BAF) with Dual Size Sand Media (다중 모래 여재를 적용한 부분 포기 Biological Aerated Filter의 효과적인 Total Nitrogen (TN) 제거)

  • Kang, Jeong-Hee;Song, Ji-Hyeon;Ha, Jeong-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • A pilot-scale biological aerated filter (BAF) was operated with an anaerobic, anoxic and oxic zone at $23{\pm}1^{\circ}C$. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 hours with recirculation rates of 100, 200 and 300% in the column was more than 96%. Total nitrogen removal was consistently above 80% for 4 and 6 hours HRT at 300% recirculation. For 3 hours HRT and 300% recirculation, total nitrogen removal was approximately 79%. Based on fitting results, the kinetic parameter values on nitrification and denitrification show that as recirculation rates increased, the rate of ammonia and nitrate transformation increased. The ammonium loading rates for maximum ammonium removed were 0.15 and 0.19 kg $NH_3$-N/$m^3$-day for 100% and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 hours with 200 - 300% recirculation rates with more than 96 % removal of sCOD and ammonium, and at least 75% removal of total nitrogen.

Characteristics of Nutrient Concentrations in Groundwater under Paddy and Upland Fields (논과 밭 지하수의 영양물질 농도 특성)

  • Jang, Hoon;Kim, Jin-Soo;Kim, Young-Hyeon;Song, Chul-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • The objective of this study was to compare concentrations of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in groundwater under paddy and upland fields, and surface water recharging from a rural mixed land-use watershed. Chinese cabbage and hot pepper were cultivated on the upland field plot. The TN concentrations in upland groundwater showed double peaks (4.7, 4.3 mg/L, respectively) in April 2009 shortly after fertilizer application, indicating that TN concentrations are greatly influenced by fertilization. However, the TN concentrations in paddy groundwater were always lower than 2.0 mg/L irrespective of fertilization. Whereas the mean concentrations of TN and $NO_3$-N in upland groundwater significantly (p<0.05) higher than those in surface water, the mean concentrations of TP and $PO_4$-P in upland groundwater were significantly lower than those in surface water. On the other hand, the mean concentrations of TN, $NO_3$-N, TP and $PO_4$-P in paddy groudwater were significantly (p<0.05) lower than those in surface water. The TN concentrations in upland groundwater were generally higher than those in surface water during early April to early December due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in upland groundwater were always lower than those in surface water due to the sorption of inorganic phosphorous by soil. Moreover, the TN and TP concentrations in paddy groundwater were always lower than those in surface water, and therefore paddy groundwater may dilute nutrient concentrations in surface water when paddy groundwater and surface water mix.

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.

Nitrification/Denitrification of Wastewater in one Column containing Biofilm (Biofilm으로 충전된 단일 Column을 이용한 폐수의 질산화/탈질산화 공정 연구)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • This study investigated possibility of the nitrification and denitrification in one counter-current column with the growth of biofilm attached to its media. This experiment was performed through use of the lab scale reactor composed of the column and settler. The column used was packed with the small size of plastic rings called PALL($1.5{\times}1.5{\;}cm$) with a cylindrical shape. Synthetic wastewater was used in the experiment. The loading rates of carbon (C) and total nitrogen (TN) furnished to the reactor were 0.23 to 1.0 kg COD/m3.d and 0.023 to 1.0 kg N/m3.d, respectively. Major factors controlling the removal efficiencies of COD and TN were the different air flux and volumetric loading rates of COD and TN. The experimental results obtained from this study demonstrated that the removal efficiencies of COD ranged from 90 to 95% and those of TN were from 80 to 83% under the N loading rate of 0.035 and $0.058{\;}kg{\;}N/m^3{\cdot}d$, respectively. The patterns of TN removed were distinctively different on the limit of 50cm of column in depth. This indicated that the nitrification and denitrification occurred near the surface zone of and inside the biofilm respectively, upto the 50cm of the column in depth.