• Title/Summary/Keyword: TOC removal

Search Result 219, Processing Time 0.031 seconds

Evaluation of Pollution Loads Removal Efficiency of Vegetation Buffer Strips Using a Distributed Watershed Model (분포형 유역모델을 이용한 식생여과대의 오염부하 저감효과 분석)

  • Park, Min-Hye;Cho, Hong-Lae;Koo, Bohn Kyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.369-383
    • /
    • 2016
  • A distributed watershed model CAMEL(Chemicals, Agricultural Management and Erosion Losses) was applied to a part of grazing grassland and vegetation buffer strip(VBS) located in Daegwanryeong, Korea. A set of scenario analyses was carried out for grassland and VBS with various combinations of VBS widths, soil textures and ground surface slopes. The simulation results indicate that annual direct runoff decreases with wider VBS and the removal efficiency of pollutants generally decrease with steeper slopes. The removal efficiency of sediment is not significantly different with VBS widths. For gentle and medium slopes($10^{\circ}$, $20^{\circ}$), the removal efficiency of TOC and TN is not significantly different with VBS widths. As for a steep slope($30^{\circ}$), however, the removal efficiency of TOC and TN increases with narrower VBS. The removal efficiency of TP is generally high except for medium and steep slope of sandy loam where the removal efficiency of TP increases with wider VBS. This result of TP is contrary to the results of TOC and TN due to the adsorption characteristics of phosphorus associated with fine sediment particles. It is expected that CAMEL can be used for evaluating the effectiveness of VBS to reduce non-point source pollution discharges.

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

Operation evaluation of DAF pilot plant for water treatment process in Hoedong Reservoir (회동수원지의 정수처리 공정을 위한 DAF pilot plant 운영 성능평가)

  • Maeng, Minsoo;Shahi, Nirmal Kumar;Kim, Donghyeun;Shin, Gwyam;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.463-471
    • /
    • 2020
  • A 1,000 ㎥/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 ㎛ showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.

Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests

  • Trinh, Thuy Khanh;Kang, Lim-Seok
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.63-70
    • /
    • 2010
  • In this study, the response surface method and experimental design were applied as an alternative to conventional methods for the optimization of coagulation tests. A central composite design, with 4 axial points, 4 factorial points and 5 replicates at the center point were used to build a model for predicting and optimizing the coagulation process. Mathematical model equations were derived by computer simulation programming with a least squares method using the Minitab 15 software. In these equations, the removal efficiencies of turbidity and total organic carbon (TOC) were expressed as second-order functions of two factors, such as alum dose and coagulation pH. Statistical checks (ANOVA table, $R^2$ and $R^2_{adj}$ value, model lack of fit test, and p value) indicated that the model was adequate for representing the experimental data. The p values showed that the quadratic effects of alum dose and coagulation pH were highly significant. In other words, these two factors had an important impact on the turbidity and TOC of treated water. To gain a better understanding of the two variables for optimal coagulation performance, the model was presented as both 3-D response surface and 2-D contour graphs. As a compromise for the simultaneously removal of maximum amounts of 92.5% turbidity and 39.5% TOC, the optimum conditions were found with 44 mg/L alum at pH 7.6. The predicted response from the model showed close agreement with the experimental data ($R^2$ values of 90.63% and 91.43% for turbidity removal and TOC removal, respectively), which demonstrates the effectiveness of this approach in achieving good predictions, while minimizing the number of experiments required.

Preparation of Composite Adsorbents by Activation of Water Plant Sludge and Phenolic Resin Mixtures

  • Myung, Heung-Sik;Kim, Dong-Pyo
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.154-157
    • /
    • 2001
  • Composite adsorbents were prepared by mixing water plant sludge with phenolic resin having the ratio of 1 : 1, 1 : 2, and 1 : 3 respectively, curing from $100^{\circ}C$ to $170^{\circ}C$ under $N_2$ atmosphere, and then activating with $N_2$ at $700^{\circ}C$. Thermal property, specific surface area and morphology of the composite adsorbents as well as their precursors were measured by TGA, BET and SEM respectively. Removal efficiency of the composite adsorbents to ${NH_4}^+$ and TOC was compared with those of commercial zeolite and activated carbon. The adsorbents presented very promising TOC removal efficiency of 98%, which was identical level to that of commercial activated carbon while they displayed removal efficiency, only 32%, of ${NH_4}^+$. Therefore, this composite adsorbent considered as the alternative material of commercial activated carbon, used as an expensive removal agent of organic substances and THM in water treatment plant and it also suggested a possibility of practical application in other processes.

  • PDF

Optimal Condition of TOC Removal Parameter for Sewage Effluent using Electrolysis Process (하수방류수 내 TOC 제거를 위한 전기분해공정의 최적 조건)

  • An, Sang-Woo;Jung, Hyuk-Sang;Lee, Hui-Kyung;Ko, Jun-Geol;Myoung, Dae-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • As the Enforcement Ordinance of Environmental Policy Act was revised in 2013, Total Organic Carbon (TOC) was added as an indicative parameter for organic matter in Water and Aquatic Ecosystem Environmental Criteria. Under these imminent circumstances, a regulatory standard is needed to achieve the proposed TOC limitation control water quality from the STP (Sewage Treatment Plant). In this study, a electrolysis utilizing the electrochemical reaction was investigated in lab-scale experiments for the treatment of TOC in sewage effluent. TOC reduction by a electrolysis was investigated response surface methodology using the Box-Begnken methods were applied to the experimental results. A central composite design was used to investigate the effects of the independent variables of electrode space ($x_1$), current density ($x_2$) and electrolyte concentration ($x_3$) on the dependent variables removal efficiency of TOC (y). The optimal conditions for electrolysis were determined: electrode space, current density and electrolyte concentration were 50 mm, $10.3mA/cm^2$ and 0.1M, respectively. Statistical results showed the order of significance of the independent variables to be electrode space > current density > electrolyte concentration.

A Study on the Degradation Characteristics of 1,4-dioxane at Different Initial pHs with Advanced Oxidation Process Using $O_3/H_2O_2$ ($O_3/H_2O_2$ 고급산화공정에서 초기 pH 변화에 따른 1,4-dioxane의 제거 특성 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.404-410
    • /
    • 2005
  • The pH efforts on the removal of 1,4-dioxane and the biodegradobility enhancement of dioxane contaminated water were investigated using $O_3/H_2O_2$ baled advanced oxidation process. Experiments were conducted using a bubble column reactor under different initial pH. The $O_3/H_2O_2$ process effectively converted 1,4-dioxane to more biodegradable intermediates which had a maximum $BOD_5$ enhancement at pH 11 within the experimental range, precisely, when the initial pH increased, $BOD_5$ enhanced. However, in case of removal efficiencies of 1,4-dioxane during $O_3/H_2O_2$ oxidation the optimum condition was shown at pH 9 compared with pH 6 and 11. TOC and COD values were not largely changed for all reaction time. From the results of 1,4-dioxane removal efficiency, TOC, COD, and $BOD_5$ enhancement with reaction time, it was surely observed that 1,4-dioxane was just converted to biodegradable materials, not completely oxidized to carbon dioxide.

Simultaneous degradation of nitrogenous heterocyclic compounds by catalytic wet-peroxidation process using box-behnken design

  • Gosu, Vijayalakshmi;Arora, Shivali;Subbaramaiah, Verraboina
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.488-497
    • /
    • 2020
  • The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

Characteristics of TOC in effluent discharge from public sewage treatment works in korea (우리나라 공공하수처리시설의 TOC 배출특성 및 관리방안 연구)

  • Jeong, Dong-Hwan;Choi, In-Cheol;Cho, Yangseok;Ahn, Kyunghee;Chung, Hyen-Mi;Kwon, Ohsang;Park, Hoowon;Shin, Hyunsang;Hur, Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.657-668
    • /
    • 2014
  • Under Korea's Enforcement Decree of the Framework Act on Environmental Policy amended in 2013, total organic carbon (TOC) is newly added as water quality parameter to assess organic pollution in water and aquatic ecosystem. To meet the TOC requirement and improve quality of effluent discharged into public watershed, it is also necessary to develop standards for TOC in effluent from public sewage treatment works (PSTWs). In this study, we reviewed the characteristics and removal efficiency of TOC in influent and effluent of PSTWs. The study found that phosphorus treatment process removed not only soluble phosphorus but also a portion of TOC remaining after the secondary treatment process. TOC concentration in effluent from PSTWs operated in tandem with industrial wastewater treatment work was higher due to influx of insoluble substances from the industrial wastewater treatment work. In order to lay a foundation for the management of TOC from PSTWs, it is necessary to carry out research on TOC from different perspectives. For example, studies on the generation mechanism of TOC and the impact of TOC on drinking water resources, assessment of effluent qualities through monitoring, and development of measures to control TOC for the preservation of aquatic ecosystem are needed.

Removal Efficiency of Pollutants in Agricultural Wastewater by Constructed Wetlands on Reclaimed Land in the Goheung Bay (고흥만 간척지 내 인공습지에 의한 농경배수 정화효율에 관한 연구)

  • Yu, Hun-Sun;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.37-47
    • /
    • 2009
  • This research was conducted at the constructed wetland in Goheung reclaimed land, and water quality components were measured at the 12 points in 15 March 2008 and 10 January 2009, respectively. Temperature, pH, DO, EC and salinity components were measured at the field, and TOC, Cl-, COD, TSS, T-P and TN components were analyzed laboratory. Concentrations of field measured components at inflow points were higher than in constructed wetland. TOC concentration ratio of inflow water to constructed wetland water was higher in January, and Cl concentration ratio of it was higher in March. And, COD concentration ratio of it were 1.37 for March and 1.49 for January, respectively. T-P and T-N concentration ratios of it at inflow points were higher 3 times than in constructed wetland. Constructed wetland attenuated concentration of contaminated components inflow to it. Removal efficiencies of Cl-, T-P and T-N components in inflow water were high at the constructed wetland. removal efficiencies of Cl component were 83% for 1st monitoring and 76% for 2nd monitoring, this removal efficiency be caused by dilution effect of constructed wetland. removal efficiencies of T-P component were 67% for 1st monitoring and 69% for 2nd monitoring, and they of T-N component were 100% for 1st monitoring and 95% for 2nd monitoring. Abnormal removal efficiency of T-N component is caused that nitrogen in inflow water was a little. Removal efficiency of T-P component was higher in January, and T-N component was higher in March. This is caused by environmental difference between growing season and winter.

  • PDF