• Title/Summary/Keyword: TNT(2,4,6-trinitrotoluene)

Search Result 56, Processing Time 0.021 seconds

Effect of Varous Physicochemical Factors on the Biodegradation of Explosive 2,4,6-Trinitrotoluene by Stenotropomonas maltophilia (Stenotrophomonas maltophilia에 의한 폭약 2,4,6-Trinitrotoluene의 생분해에 영향을 미치는 물리화학적 요인)

  • 김영진;이명석;조윤석;한현각;김승기;오계헌
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • The relationships between the explosive 2,4,6-trinitrotoluene (TNT) degradation by Stenotrophomonas maltophilia and several relevant physicochemical environmental parameters were examined. At neutral pH of the cultures, the degradation of TNT proceeded to completion, whereas only about 50% of TNT was utilized when the cultures were adjusted to acidic pH. The effect of various co-substrates (e.g., glucose, fructose, acetate, citrate, succinate) on the degradation of TNT by the test culture of S. maltophilia was evaluated. The results indicated that, among the various co-substrates studies, the test culture that received 2 mM fructose degraded 100 mg/L of TNT completely within 20 days of incubation at ambient temperature, whereas partial degradation of TNT was observed in the test culture with acetate, citrate, or succinate as a co-substrate, respectively. In fact, fructose was the best co-substrate for TNT degradation in this experiment. The effect of supplemented nitrogens [e.g., (NH$_4$)$_2$,SO$_4$, NH$_4$Cl. urea] on the TNT degradation was monitored. All supplemented nitrogens in this study were inhibitory to TNT degradation. Addition of 1% Tween80 accelerated TNT degradation, and showed complete degradation of TNT within 8 days of incubation. Addition of yeast extract resulted higher growth yields, based on turbidity measurement, but it inhibited TNT degradation.

  • PDF

Removal of 2,4,6-trinitrotoluene(TNT) by Indigenous Grasses, Abutilon Avicennae and Aeschynomene Indica, in Hydroponic Culture (토착 야초류(어저귀, 자귀풀)의 수경재배를 이용한 2,4,6-trinitrotoluene(TNT) 분해 연구)

  • Kwon, Young-seok;Kim, Dong-ill;Choung, Youn-kyoo;Bae, Bum-han;Lee, In-sook;Chang, Yoon-young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2004
  • In this study, uptake and translocation of 2,4,6-trinitrotoluene(TNT) by plant in a hydroponic culture was quantified with two indigenous plant species, Aeschynomene indica and Abutilon avicennae on various initial concentrations of TNT ranging from 20 to 80 mgTNT/L. Experiments were sterilized to exclude the activity of microorganisms and conducted in duplicate. Weight loss of two plant species in added TNT culture media was higher than in control. At over 2OmgTNTIL, there appeared to be phytotoxicity from TNT as indicated by severe yellow-chlorosis and increase of falling leaves. TNT removal rate normalized(K) to the plant fresh weight of Abutilon avicennae and Aeschynomene indica was that the higher TNT concentrations resulted in lower TNT removal rate normalized(K) to the plant fresh weight. Approximately 96% of the TNT in viable microflora-hydroponic culture was removed after 96h of the experiments.

Combined Effect of 2,4,6-trinitrotoluene(TNT) and Cadmium on Uptake and Phytotransformation of TNT by Abutilion avicennae (TNT(2,4,6-trinitrotoluene)와 카드물의 복합오염이 어저귀의 TNT 흡수 및 생물학적 전환에 미치는 영향)

  • 이인숙;김선영;배범한;장윤영
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.69-74
    • /
    • 2002
  • Most of army depots contaminated with co-contaminants. 2,4,6-trinitrotoluene(TNT) and heavy metais. In phytormediation for the TNT, heavy metals may inhibit mineralization, transformation and sequestration of TNT by the plant. W studied effect of cadmium on TNT degradation and transformation by Abutilion avicenneae in hydroponic cultures. When cultured in 20 ㎎TNT/L and 1.3 ㎎Cd/L. the plant displayed phytotoxicities; reduction of leaf fresh, leaf roll, chlorosis, leaf loss and fresh weight loss. Phytotoxicity was severer in the combined contaminnts than in single contaminant. Because A. avicennae uptake just a little cadmium, 1.3 ㎎Cd/L induded in the TNT medium did not influece significanfly TNT transformation, translocation and distrivution by A. Therefore, the soil solution containing cadmium would not affect TNT degradation by Abutilion avicennae in Amy depots polluted with TNT.

Simultaneous Utilization of Two Different Pathways in Degradation of 2,4,6-Trinitrotoluene by White Rot Fungus Irpex lacteus

  • 김현영;송홍규
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.250-250
    • /
    • 2002
  • This study confirmed that white rot fungus Irpex lacteus was able to metabolize 2,4,6-trinitrotoluene (TNT) with two different initial transformations. In one metabolic pathway of TNT a nitro group was removed from the aromatic ring of TNT. Hydride-Meisenheimer complexes of TNT (H/sup -/-TNT), colored dark redo were confirmed as the intermediate in this transformation by comparison with the synthetic compounds. 2,4-Dinitrotoluene as a following metabolic product was detected, and nitrite produced by denitration of $H^-$-TNT supported this transformation. In the other TNT pathway, nitro groups in TNT were successively reduced to amino groups via hydroxylamines. Hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes were identified as the intermediates. The activity of a membrane-associated aromatic nitroreductase was detected in the cell-free extract of I. lacteus. This enzyme catalyzed the nitro group reduction of TNT with NADPH as a cofactor, Enzyme activity was not observed in the presence of molecular oxygen.

Simultaneous Utilization of Two Different Pathways in Degradation of 2,4,6-Trinitrotoluene by White Rot Fungus Irpex lacteus

  • Kim, Hyoun-Young;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.250-254
    • /
    • 2000
  • This study confirmed that white rot fungus Irpex lacteus was able to metabolize 2,4,6-trinitrotoluene (TNT) with two different initial transformations. In one metabolic pathway of TNT a nitro group was removed from the aromatic ring of TNT. Hydride-Meisenheimer complexes of TNT (H$\^$-/-TNT), colored dark redo were confirmed as the intermediate in this transformation by comparison with the synthetic compounds. 2,4-Dinitrotoluene as a following metabolic product was detected, and nitrite produced by denitration of H$\^$-/-TNT supported this transformation. In the other TNT pathway, nitro groups in TNT were successively reduced to amino groups via hydroxylamines. Hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes were identified as the intermediates. The activity of a membrane-associated aromatic nitroreductase was detected in the cell-free extract of I. lacteus. This enzyme catalyzed the nitro group reduction of TNT with NADPH as a cofactor, Enzyme activity was not observed in the presence of molecular oxygen.

  • PDF

Combined Effect of 2,4,6-trinitrotoluene(TNT) and Cadmium on Uptake and Phytotransformation of TNT by Abutilion avicennae (TNT(2,4,6-trinitrotoluene)와 카드뮴의 복합오염이 어저귀의 TNT흡수 및 생물학적 전환에 미치는 영향)

  • Kim, Sun-Young;Bae, Bum-Han;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.139-144
    • /
    • 2002
  • Most of army depots contaminated with co-contaminants, 2,4,6-trinitrotoluene(TNT) and heavy metals. In phytoremediation for the TNT, heavy metals may inhibit mineralization, transformation and sequestration of TNT by the plant. We studied effect of cadmium on TNT degradation and transformation by Abutilion avicennae in hydroponic cultures. When cultured in 20 mgTNT/L and 1.3 mgCd/L, the plant displayed phytotoxicities; reduction of leaf fresh, leaf roil, chlorosis, leaf loss and fresh weight loss. Phytotoxicity was severer in the combined contaminants than in single contaminant. Because A. avicennae uptake just a little cadmium, 1.3 mgCd/L included in the TNT medium did not influece significantly TNT transformation, translocation and distribution by A. avicennae. Therefore, the soil solution containing cadmium would not affect TNT degradation by Abutilion avicennae in Army depots polluted with TNT.

Reduction of 2,4,6-Trinitrotoluene Mobility in Operational Range Soil by Sorption Enhancement and Desorption Decrease Using Monopotassium Phosphate and Montmorillonite (제일인산칼륨과 몬트모릴로나이트 점토를 이용한 사격장 토양 내 2,4,6-trinitrotoluene의 흡착증진 및 탈착감소에 의한 이동성 저감 연구)

  • Jung, Jae-Woong;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.46-53
    • /
    • 2018
  • Mobility reduction of 2,4,6-trinitrotoluene (TNT) was tested by amending monopotassium phosphate (MKP) and montmorillonite to a firing range soil contaminated with TNT. While addition of MKP enhanced sorption of TNT on soil matrix, and combined use of MKP with montmorillonite significantly decreased desorption of TNT as well as remarkably increased the TNT sorption. Montmorillonite amendment by 5% of soil mass resulted in TNT desorption of 0.12 mg/kg from soil loaded with 9.93 mg/kg-TNT. The decrease of TNT desorption was proportional to the amount of montmorillonite amended. At 10 and 15% amendment, only 0.79 and 1.23 mg/kg-TNT was desorbed from 29.33 and 48.80 mg/kg-TNT. In addition, the leaching of TNT with synthetic precipitation leaching procedure (SPLP) and hydroxypropyl-${\beta}$-cyclodextrin (HPCD) decreased, indicating that TNT in MKP/montmorillonite-treated soil became more stable and less leachable. The results demonstrate that addition of MKP and montmorillonite to TNT-contaminated soil reduces the mobility of TNT from soil not only by increasing TNT sorption, but also decreasing TNT desorption. It was found that MKP and montmorillonite amendments by 5 and 10% of soil mass, respectively, were optimal for reducing the mobility of soil TNT.

Phytoremediation of 2,4,6-trinitrotoluene by Abutilion avicennae (어저귀에 의한 2,4,6-trinitrotoluene의 식물상 복원공법)

  • 배범한;김선영;이인숙;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.38-41
    • /
    • 2001
  • It has been reported that some plants have the potential to metabolize the 2,4,6-trintroluene (TNT) in contaminated soils, sediments and natural water. In this study, the effects of TNT on germination and early seedling development of Abutilion avicennae was characterized in a germination test. Concentration up to 80 mg/L TNT did not affect germination but root and shoot growth, and fresh biomass decreased as TNT concentration increased. A series of axenic hydroponical batch culture of Abutilion avicennae at various initial TNT concentration was used to determine its transformation kinetics, to identify products formed, and to evaluate phytotoxic effects on the TNT transformation process. At higher initial TNT concentrations, TNT removal rate constant decreased, however, total amount of TNT removed was increased in the culture media. Reductive transformation products of TNT were not detected in the plant culture media but higher concentrations of reduced metabolites were detected in the root and stem extracts of plant material at the 7 days of batch incubation. From these results we concluded that Abutilion avicennae has an intrinsic capacity for taking up and transforming TNT.

  • PDF

Toxicity and Uptake of 2,4,6-Trinitrotoluene (TNT) in Contaminated Soils to Eisenia fetida (토양내 오염된 2,4,6-trinitrotoluene (TNT)의 Eisenia fetida에 대한 독성 및 생물흡수)

  • Nurofik, Nurofik;Choi, Jiyeon;Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Toxicity and uptake of 2,4,6-trinitrotoluene (TNT) in three different soils (OECD soil, natural soil and loess) to earthworm (Eisenia fetida) were investigated at several different spiked concentrations of TNT (0 to 200 mg/kg for OECD and natural soils, and 0 to 35 mg/kg for loess) and for different exposure periods (7, 14, 21, and 28 d). The LC50 values for 7 d exposure were 160.1, 159.4, and 28.81 mg/kg for OECD soil, natural soil, and loess, respectively. The LC50 values for 14, 21, and 28 d exposure were almost the same as those for 7 d exposure, showing that 7 d exposure time was enough to decide the toxicity (LC50) of TNT to Eisenia fetida, because the highest concentration of TNT in earthworm body was observed within around 5 d. The LC50 and uptake of TNT in loess were higher than those in OECD and natural soil. The uptake of TNT to the earthworm were correlated well with the initial concentration of TNT in the soil and TNT porewater concentration (R2> 0.9 in OECD, natural, and loess). The concentration of TNT in earthworm body decreased after 5 d, possibly caused by natural degradation of TNT by soil bacteria as well as earthworm.

A Study on the Removal of TNT(2,4,6-trinitrotoluene) using Marsh and Pond Type Microcosm Wetland Systems (Marsh와 Pond 형태의 Microcosm 습지 시스템을 이용한 TNT(2,4,6-trinitrotoluene)의 분해 연구)

  • Choi, Jong-Kyu;Kim, Se-Kyung;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • This study was carried out to investigate the removal of TNT (2,4,6-trinitrotoluene) in the batch and continuous type microcosm systems consisting of marsh and pond. First, the batch reactor study showed that TNT (10 mg/L) was completely removed in the marsh and pond system within 20 days. The major reductive metabolites of TNT include 4-amino-2,6-dinitrotoluene (4-ADNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT), and 2,6-diamino-4-nitrotoluene (2,6-DANT). These metabolites concentration also decreased during further treatment. The continuous reactor systems combining marsh and pond indicated the similar pattern of TNT degadation and the metabolites production. Among the continuous reactor combinations, marsh-pond system showed more stable TNT removal and metabolites production. The toxicity of the effluent from the continuous system was examined by Microtox Assay using Vibrio fischeri. The result showed that the effluent toxicity was reduced below toxicity endpoint ($EC_{50}$) after continuous marsh pond system, indicating that metabolites of TNT are less toxic than TNT itself. Based on the results, TNT contaminated wastewater can be efficiently treated using marsh and pond wetland systems.