• 제목/요약/키워드: TNF receptor

검색결과 337건 처리시간 0.028초

Apoptotic Killing of Breast Cancer Cells by IgYs Produced Against a Small 21 Aminoacid Epitope of the Human TRAIL-2 Receptor

  • Amirijavid, Shaghayegh;Entezari, Maliheh;Movafagh, Abolfazl;Hashemi, Mehrdad;Mosavi-Jarahi, Alireza;Dehghani, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.293-297
    • /
    • 2016
  • TRAIL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand belongs to one of important cytokine superfamilIES, tumor necrosis factor ($TNF{\alpha}$). TRAIL-2 receptor agonists activate several cell signaling pathways in cells in different manners and could lead to apoptosis or necrosis. Agonistic egg yolk antibodies like IgY which have been developed in a selective manner could activate TRAIL death receptors such as TRAIL-2 (DR5) and thus apoptosis signaling. We here investigated induction of apoptosis in human breast cancer cells (MCF7 cell line) by an IgY produced against an 21 aminoacid epitope of the human TRAIL-2 receptor. As the first step a small peptide of 21 aminoacids choosen from the extracellular domain of DR5 protein was produced with a peptide synthesizer. After control assays and confirmation of the correct amino acid sequence, it was injected to hens immunized to achieve high affinity IgYs. At the next step, the produced IgYs were extracted and examined for specificity against DR5 protein by ELISA assay. Subsequently, the anticancer effect of such IgYs was determined by MTT assay in the MCF7 human breast cancer cell line. The produced peptides successfully immunized hens and the produced antibodies which accumulated in egg yolk specifically recognized the DR5 protein. IgYs exerted significant toxicity and killed MCF7 cells as shown by MTT assay.

Expression of Tumor Necrosis Factor Receptor-associated Factor 6 in Lung Cancer Tissues

  • Zhang, Xiu-Ling;Dang, Yi-Wu;Li, Ping;Rong, Min-Hua;Hou, Xin-Xi;Luo, Dian-Zhong;Chen, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10591-10596
    • /
    • 2015
  • Background: Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) has been reported to be associated with the development of various cancers. However, the role of TRAF6 in lung cancer remains unclear. Objective: To explore the expression and clinicopathological significance of TRAF6 protein in lung cancer tissues. Materials and Methods: Three hundred and sixty-five lung cancer samples and thirty normal lung tissues were constructed into 3 microarrays. The expression of TRAF6 protein was determined using immunohistochemistry (IHC). Furthermore, correlations between the expression of TRAF6 and clinicopathological parameters were investigated. Results: The expression of TRAF6 in total lung cancer tissues (365 cases), as well as in small cell lung cancer (SCLC, 26 cases) and non-small cell lung cancer (NSCLC, 339 cases) was significantly higher compared with that in normal lung tissues. The ROC curve showed that the area under curve of TRAF6 was 0.663 (95%CI 0.570~0.756) for lung cancer. The diagnostic sensitivity and specificity of TRAF6 were 52.6% and 80%, respectively. In addition, the expression of TRAF6 was correlated with clinical TNM stage, tumor size and lymph node metastasis in all lung cancers. Consistent correlations were also observed for NSCLCs. Conclusions: TRAF6 might be an oncogene and the expression of TRAF6 protein is related to the progression of lung cancer. Thus, TRAF6 might become a target for diagnosis and gene therapy for lung cancer patients.

Smooth muscle cell 증식에 있어 NF-κ ligand의 receptor activator의 역할 (The Role of Receptor Activator of NF-κ Ligand in Smooth Muscle Cell Proliferation)

  • 김현주
    • 생명과학회지
    • /
    • 제16권6호
    • /
    • pp.1066-1070
    • /
    • 2006
  • Smooth muscle cell (SMC)의 증식은 혈관성장에 의한 질환의 발병기전의 중요한 요소이다. 혈관 손상 후 SMC의 성장조절에 대한 분자적 기작에 대한 연구는 치료제 개발에 있어 중요한 의미를 지닌다. 이에, 본 연구에서는 TNF family인 RANKL가 SMC의 증식을 촉진함을 입증하였다. RANKL는 p21의 발현을 감소시키고 p21의 promoter활성을 저해함으로써 SMC의 성장을 증가시켰다. 또한 ERK와 p38 MAPK의 활성이 RANKL에 의해 증가하였으며, ERK/p38의 저해제는 RANKL에 의해 유도되는 SMC의 성장을 완전히 억제하였다. 이러한 결과는 ERK와 p38 MAPK가 RANKL에 의해 유도되는 SMC의 증식에 중요한 역할을 함을 보여주는 것이다. 즉, RANK-RANKL-ERK/p38이 SMC의 증식을 매개하는 중요 분자이며, 이들 분자는 혈관 질환을 막는 새로운 치료제 개발의 표적분자가 될 수 있음이 입증되었다.

비만 유전자 단일 염기 다형성 문헌 고찰 (A literature Review of Single Nucleotide Polymorphisms in Obesity Genes)

  • 김성수;송희옥
    • 한방비만학회지
    • /
    • 제4권1호
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF

Effect of Trolox on Altered Vasoregulatory Gene Expression in Hepatic Ischemia/Reperfusion

  • Eum, Hyun-Ae;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.225-231
    • /
    • 2004
  • This study was designed to investigate the effect of Trolox, a hydrophilic analogue of vitamin E, on the alteration of vasoregulatory gene expression during hepatic ischemia and reperfusion (I/R). Rats were subjected to 60 min of hepatic ischemia in vivo. The rats were treated intravenously with Trolox (2.5 mg/kg) or the vehicle as a control 5 min before reperfusion. Liver samples were obtained 5 h after reperfusion for a RT-PCR analysis on the mRNA for the genes of interest. These mRNA peptides are endothelin-1 (ET -1), potent vasoconstrictor peptide, its receptor $ET_A$ and $ET_B$, vasodilator endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and cyclooxygenase-2 (COX-2). It was seen that serum alanine aminotransferase and lipid peroxi-dation levels were markedly increased after I/R and Trolox significantly suppressed this increase. In contrast, the glutathione concentration decreased in the I/R group, and this decrease was inhibited by Trolox. ET-1 mRNA expression was increased by I/R, an increase which was prevented by Trolox. The mRNA levels for $ET_A$ receptor was significantly decreased, whereas ET$_{B}$ receptor transcript increased in the I/R group. The increase in $ET_A$ was prevented by Trolox. The mRNA levels for iNOS and HO-1 significantly increased in the I/R group and Trolox attenuated this increase. There were no significant differences in eNOS mRNA expression among any of the experimental groups. The mRNA levels for COX-2 and TNF-$\alpha$ significantly increased in I/R group and Trolox also attenuated this increase. Our findings suggest that I/R induces an imbalanced hepatic vasoregulatory gene expression and Trolox ameliorates this change through its free radical scavenging activity.y.

홍삼 생약 복합물(KTNG0345)의 피부 주름개선에 관한 작용기전 (Mechanisms of Korean red ginseng and herb extracts(KTNG0345) for anti-wrinkle activity)

  • 소승호;이성계;황의일;구본석;한경호;정진호;이민정;김나미
    • Journal of Ginseng Research
    • /
    • 제32권1호
    • /
    • pp.39-47
    • /
    • 2008
  • 본 실험은 홍삼 혼합물 (KTNG0345)을 이용한 주름 예방 및 개선효과가 있는 건강기능 식품을 개발하기 위한 기초자료로 활용하기 위하여 시료를 경구투여한 무모생쥐의 피부조직 으로부터 MMP-3의 발현양상과 작용 메커니즘을 연구하였다. MMP-3의 발현정도는 농도 의존적으로 현저한 감소를 나타내었으며, 유전자와 단백질 모두에서 동일한 양상을 보였다. PAK는 변화가 없었지만, p38, p-p38 그리고 c-Jun, p-c-Jun 을 통계적으로 유의하게 감소시킴으로써 MMPs의 발현 감소를 가져온 것으로 보인다. 뿐만 아니라 자외선에 의한 $TNF-{\alpha}$의 생성 또는 유입을 억제함으로써 $TNF-{\alpha}$ receptor에 의해 매개되는 신호전달 경로를 둔화시켜 MMPs의 발현을 감소시킨 것으로 보인다. 이렇게 KTNG0345는 복합적인 활성으로 작용하여 주름생성 억제 활성을 보이는 것으로 판단된다.

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.

Inhibitory Effects of Artemisia asiatica on Osteoclast Formation Induced by Periodontopathogens

  • Moon, Sun-Young;Choi, Bong-Kyu;Cha, Jeong-Heon;Min, Chon-Ki;Son, Mi-Won;Yoo, Yun-Jung
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.94-98
    • /
    • 2005
  • Bone resorption surrounding tooth root causes tooth loss in periodontitis patients. Osteoclast has bone resorption activity. Effects of Artemisia asiatica on bone resorption induced by periodontopathogens, Porphyromonas gingivalis and Treponema denticola, were examined using co-culture systems of mouse osteoblasts and bone marrow cells. Addition of A. asiatica ethanol extract to bacterial sonicate abolished bacteria-induced osteoclastogenesis. To determine inhibitory mechanism of A. asiatica against osteoclastogenesis, effects of A. asiatica on expressions of osteoclastogenesis-inducing factors such as receptor activator of NF-${\kappa}B$ ligand (RANKL), prostaglandin $E_2\;(PGE_2)$, interleukin (IL)-1, and tumor necrosis factor (TNF)-${\alpha}$, in osteoblasts were examined. A. asiatica suppressed expressions of RANKL, $PGE_2$, IL-$1{\beta}$, and TNF-${\alpha}$ increased by each bacterial sonicate. These results suggest inhibitory action of A. asiatica against osteoclastogenesis is associated with down-regulations of RANKL, $PGE_2$ IL-$1{\beta}$, and TNF-${\alpha}$ expressions.

Effects of Conjugated Linoleic Acid on Adipocyte Secreted Proteins in vitro

  • Ha, Jung-Heun;Ahn, In-Sook;Byun, Jae-Min;Do, Hyung-Ki;Jung, Sun-Young;Jeong, Jae-Hong;Wahle, Klaus W.J.;Park, Kun-Young;Do, Myoung-Sool
    • Preventive Nutrition and Food Science
    • /
    • 제8권3호
    • /
    • pp.253-259
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is a class of positional, geometric conjugated dienoic isomers of linoleic acid (LA). CLA activates the immune system, protects against tumorigenesis, and reduces the incidence of atherosclerosis. Trans-10, cis-12 CLA has specific effects on lipid metabolism, it has been shown to reduce body fat gain and regulates some adipocyte secreted proteins in vivo and in vitro. Here we report that a CLA mixture affects cytokine secretion from rat primary adipocytes. Rat primary adipocytes were treated with 1 mM, 100 $\mu$M, 1 $\mu$M or 100 nM CLA mixture doses; and leptin, tumor necrosis factor alpha (TNF a ), interleukin-6 (IL-6) and glycerol levels in the medium were measured. Leptin secretion was lower, TNF $\alpha$ secretion higher and IL-6 secretion did not change in response to the CLA mixture. Leptin and TNF $\alpha$ secretions did not change with CLA mixture treatment in a dose-dependent manner. In addition, the CLA mixture did not appear to enhance lipolysis in rat primary adipocytes. In conclusion, our study demonstrates that the decrease in leptin and increase in TNF $\alpha$ secretion in adipocytes treated with CLA mixture may be due to the apoptotic effect and to a reduction in peroxisome proliferator-activated receptor gamma (PPAR ${\gamma}$ ) ligands.

Use of Tumor Necrosis Factor Receptor (TNFR)-Knockout Mice to Probe the Mechanism of Chemically-Induced Asthma

  • Karol, Meryl H.;Matheson, Joanna M.;Lange, Robert W.;Lemus, Ranulfo;Luster, Michael I.
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.305-307
    • /
    • 2001
  • Toluene diisocyanate (TDI) is widely used in the manufacture of polyurethanes and is a recognized cause of occupational asthma. Although extensive investigations have been undertaken, the molecular mechanism(s) of the disease is still unclear. We hypothesized that inflammatory cytokines are required during both the sensitization and elicitation phases of the disease and have utilized TNF-R knock-out (KO) mice to address the hypothesis. Black C57 TNFR knock-out mice were exposed to TDI by sc injection and challenged by inhalation of 100 ppb TDI vapor. Control animals included: wild type C57 animals, sham-exposed animals that were challenged with TDI, and animals that were injected with anti-TNF antibodies prior to sensitization and again prior to challenge. Total IgE was increased in the knock-out animals compared with the wild type sensitized and challenged animals whereas TDI-specific IgG antibodies did not differ significantly in KO and wild type animals. There was less inflammation in the nares and trachea in KO animals compared with the wild type animals exposed to TD1 as well as less goblet cell hyperplasia and epithelial damage. Airway reactivity was assessed in animals treated with anti-TNF$\alpha$ antibody and found to be substantially reduced compared with that in sensitized and challenged animals. These results indicate that TNF$\alpha$ plays a role in the immunologic and physiologic responses and in airways inflammation in this animal model and suggests a role for TNF in occupational asthma due to TDI.

  • PDF