• 제목/요약/키워드: TNF receptor

검색결과 337건 처리시간 0.022초

과루인 에탄올 추출물의 혈관신생 억제효과 (Inhibitory Effect of the Ethanolic Seed Extract of Trichosanthes kirilowii on Angiogenesis in Human Umbilical Vein Endothelial Cells)

  • 박신형;박현지
    • 동의생리병리학회지
    • /
    • 제36권5호
    • /
    • pp.175-180
    • /
    • 2022
  • The seeds of Trichosanthes kirilowii (STK) used in traditional Oriental medicine for the treatment of dry cough and constipation have diverse pharmacological activities, including hypolipidemic, antioxidant, immunosuppressive, and anticancer effects. However, the effect of STK on angiogenesis has not been studied yet. In this study, we investigated whether the ethanolic extract of STK (ESTK) can regulate the migration and tube formation of human umbilical vein endothelial cells (HUVECs) and explored the underlying mechanism. Results of transwell assay showed that ESTK treatment dose-dependently suppressed the migration of HUVECs. The conditioned medium collected from H1299 human lung cancer cells was used as a chemoattractant. Our observation suggests that ESTK would inhibit the recruitment of endothelial cells into tumors. In addition, ESTK treatment significantly reduced the tube formation of HUVECs. As a molecular mechanism, we found that vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGF receptor 2 (VEGFR2) was completely blocked by ESTK treatment. The expression of angiogenic factors, including VEGFA, fibroblast growth factor 2 (FGF2), angiopoietin, placental growth factor (PGF), platelet derived growth factor (PDGF), angiogenin, and tumor necrosis factor (TNF)-α, was commonly decreased by ESTK treatment in H1299 cells, indicating that ESTK would reduce the production of angiogenic factors from cancer cells. Taken together, our results clearly demonstrated that ESTK exhibited anti-angiogenic effects in HUVECs, which provides another possible mechanism underlying the anticancer activities of STK.

In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells

  • Dong-Ha Lee;Eun-bee Lee;Jong-pil Seo ;Eun-Ju Ko
    • Journal of Veterinary Science
    • /
    • 제24권3호
    • /
    • pp.37.1-37.14
    • /
    • 2023
  • Background: Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. Objectives: The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). Methods: The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. Results: The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. Conclusions: The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

6-Shogaol, an Active Ingredient of Ginger, Improves Intestinal and Brain Abnormalities in Proteus Mirabilis-Induced Parkinson's Disease Mouse Model

  • Eugene Huh;Jin Gyu Choi;Yujin Choi;In Gyoung Ju;Dongjin Noh;Dong-yun Shin;Dong Hyun Kim;Hi-Joon Park;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.417-424
    • /
    • 2023
  • Parkinson's disease (PD) which has various pathological mechanisms, recently, it is attracting attention to the mechanism via microbiome-gut-brain axis. 6-Shogaol, a representative compound of ginger, have been known for improving PD phenotypes by reducing neuroinflammatory responses. In the present study, we investigated whether 6-shogaol and ginger attenuate degeneration induced by Proteus mirabilis (P. mirabilis) on the intestine and brain, simultaneously. C57BL/6J mice received P. mirabilis for 5 days. Ginger (300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 22 days including the period of P. mirabilis treatment. Results showed that 6-shogaol and ginger improved motor dysfunction and dopaminergic neuronal death induced by P. mirabilis treatment. In addition, they suppressed P. mirabilis-induced intestinal barrier disruption, pro-inflammatory signals such as toll-like receptor and TNF-α, and intestinal α-synuclein aggregation. Moreover, ginger and 6-shogaol significantly inhibited neuroinflammation and α-synuclein in the brain. Taken together, 6-shogaol and ginger have the potential to ameliorate PD-like motor behavior and degeneration of dopaminergic neurons induced by P. mirabilis in mice. Here, these findings are meaningful in that they provide the first experimental evidence that 6-shogaol might attenuate PD via regulating gut-brain axis.

Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation

  • Juhee Son;Mi-Jeong Kim;Ji Su Lee;Ji Young Kim;Eunyoung Chun;Ki-Young Lee
    • IMMUNE NETWORK
    • /
    • 제21권5호
    • /
    • pp.37.1-37.17
    • /
    • 2021
  • Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.

Gromwell (Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis

  • Ji-Sun Kim;Hyunjung Lee;Ahyoung Yoo;Hang Yeon Jeong;Chang Hwa Jung;Jiyun Ahn;Tae-Youl Ha
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.495-505
    • /
    • 2024
  • Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.

자궁내막증 환자와 대조군에서의 자궁내막 유전자 발현의 차이: Microarray를 이용한 연구 (Comparison of Gene Expression Profile in Eutopic Endometria with or without Endometriosis: A Microarray Study)

  • 정민지;정은정;이신제;김문규;전상식;이택후
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제34권1호
    • /
    • pp.19-31
    • /
    • 2007
  • 목 적: 자궁내막증은 자궁내부에 존재하여야 할 자금내막조직이 자궁 외에 존재하는 질환으로 그 발생기전은 아직 명확하게 밝혀져 있지 않다. 이에 저자들은 자궁내막증 환자와 정상 대조군의 자궁내막조직 간의 유전자 발현의 차이가 자궁내막증의 발병과 관련이 있을 것이라는 가정 하에 DNA microarray 기술을 도입하여 연구를 시행하였다. 연구방법: 2002년 1월부터 2002년 12월까지의 기간 동안 본원 산부인과에서 자궁내막증 환자와 자궁내막증 이외의 다른 부인과적 질환으로 수술을 시행한 환자들을 대상으로 채취한 자궁내막 조직으로 KNU 4.8K cDNA chip을 이용하여 유전자 발현을 비교 연구하였다. 유전자칩으로 자궁내막증 조직에서 발현의 증감을 보였던 유전자 중에서 8종의 유전자를 대상으르 RT-PCR이나 real time RT-PCR 법을 통하여 그 발현 양상을 검증하였다. 결 과: 자궁내막증에 이환된 여성의 자궁내막조직에서 대조군에 비하여 높게 발현되고 있는 것으로 나타난 유전자들은 ATP synthase H transporting F1 (ATP5B), eukaryotic translation elongation factor 1, isocitrate dehydrogenase 1 (NADP+), mitochondrial ribosomal protein L3, ATP synthase H+ trarsporting (ATP5C1), LPS induced TNF-$\alpha$ factor 등으로 세포의 에너지 생성과 대사과정 및 신호전달에 관여하는 유전자들이었다. 한편 자궁내막중 환자의 자궁내막조직에서 대조군에 비하여 낮게 발현된 유전자들은 insulin like growth factor II associated protein, EGF-containing fibulin-like EMP1, matrix Gla protein, TGF beta-induced, TGF beta receptor 1(activin A receptor type II-like kinase), cystallin alpha B, fibulin 5, tissue inhibitor of metalloproteinase 3, collage type XII, alpha 1, tissue inhibitor of metalloproteinase 1, decorin 등으로 세포외기질의 구성 및 기능에 관련이 있었다. 결 론: 이상의 DNA mirroarry 및 RT-PCR을 통해 얻어진 결과에서 자궁내막증의 자궁내막조직에서 대조군에 비하여 유전자들의 발현에 차이가 있음을 확인하였다.

폐암세포주에서 NFκ 활성 억제를 통한 Proteasome 억제제 MG132의 TRAIL-유도성 Apoptosis 감작 효과 (The Proteasome Inhibitor MG132 Sensitizes Lung Cancer Cells to TRAIL-induced Apoptosis by Inhibiting NF-κ Activation)

  • 서필원;이계영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권6호
    • /
    • pp.476-486
    • /
    • 2008
  • 연구배경: 정상세포는 보호되고 종양세포에 독성을 보인다고 알려진 TNF유전자족으로 새로이 확인된 TRAIL이 폐암세포에서 보이는 아포프토시스 효과를 확인하고, 아포프토시스로부터 세포를 보호하는 전사인자 $NF-{\kappa}B$가 TRAIL에 의하여 활성화 되는 정도를 평가하여 MG132의 $NF-{\kappa}B$활성억제가 TRAIL 유도성 아포프토시스를 감작시키는지를 확인하기 위하여 본 연구를 시행하였다. 방법: A549(wt p53) 및 NCI-H1299(null p53) 폐암세포주를 사용하였다. 세포독성 검사는 MTT assay를 이용하였고 아포프토시스는 Annexin V assay와 FACS 분석을 이용하였다. $NF-{\kappa}B$ 전사활성은 luciferase reporter gene assay를 이용하였고 $I{\kappa}B{\alpha}$ 분해는 western blot을 이용하였으며, TRAIL에 의해 활성화된 $NF-{\kappa}B$와 DNA 결합은 electromobility shift assay와 anti-p65 antibody를 이용한 supershift assay로 확인하였다. 결과: 1) TRAIL 100 ng/ml 농도에서 wild-type p53인 A549 폐암세포는 34.4%, p53 null인 NCI-H1299 폐암세포는 26.4%의 세포사를 관찰하였다. 2) Luciferase reporter gene assay로서 TRAIL에 의한 $NF-{\kappa}B$의 활성이 A549 $IgG{\kappa}B-luc$세포에서 2.45배 증가하고 NCI-H1299 $IgG{\kappa}B-luc$세포에서는 1.47배 증가함을 관찰하여 TRAIL에 의하여 $NF-{\kappa}B$가 활성화됨을 확인하였다. 3) MG132의 전처치로 TRAIL에 의한 $NF-{\kappa}B$의 활성이 A549 세포와 NCI-H1299 세포에서 각각 기저수준의 0.24, 0.21배로 강력히 억제되었다. 4) TRAIL단독으로 30% 전후의 세포독성이 MG132 전처치 후 TRAIL을 투여하면 두 세포주 모두에서 80% 이상의 세포독성이 관찰되어 MG132가 TRAIL유도성 아포프토시스에 감작효과가 있음을 확인하였다. 결론: 이상의 결과로 TRAIL에 상대적인 내성을 보이는 폐암세포주에서 MG132가 $NF-{\kappa}B$ 활성억제로서 TRAIL유도성 아포프토시스를 강화시키는 효과가 있음을 확인할 수 있었다. 따라서 본 연구는 향후 폐암치료에 있어서 TRAIL유도성 아포프토시스가 이용될 수 있는 가능성을 확인한 기초자료가 된다고 생각된다.

인간 골수성 백혈병 세포에서 Flt-3 수용체 리간드에 의한 CD11c 발현의 증가 (Up-regulation of CD11c Expression on Human Acute Myelogenous Leukemia Cells by Flt-3 Ligand)

  • 서기;곽종영
    • 생명과학회지
    • /
    • 제19권12호
    • /
    • pp.1690-1697
    • /
    • 2009
  • CD11c와 CD80 및 CD86과 같은 보조 수용체는 주로 수지상 세포에서 발현되는 세포 표지 인자이다. 본 연구에서는 KG-1, HL-60, NB4 및 THP-1 세포와 같은 여러 종류의 백혈병 세포를 이용하여 이들 세포에 재조합 Flt-3 리간드를 처리하였을 때 수지상 세포의 표면 인자인 CD11c의 발현에 어떠한 변화가 있는가를 조사하였다. KG-1 세포뿐만 아니라 NB4세포와 HL-60 세포에서도 Flt-3 수용체가 발현됨을 확인하였으나 THP-1 세포에서는 이들 수용체가 발현되지 않았다. KG-1 세포를 Flt-3 리간드나 granulocyte macrophage-colony stimulating factor (GM-CSF)와 tumor necrosis factor (TNF)-$\alpha$를 섞은 배양액에서 배양하였을 때 세포 증식은 억제되었으며 CD11c 발현은 현저히 증가되었다. 그러나 Flt-3 리간드를 처리한 KG-1세포에서는 GM-CSF와 TNF-$\alpha$를 처리한 세포에서와는 다르게 major histocompatibility complex (MHC)-I 및 MHC-II의 발현은 증가되지 않았다. Flt-3 리간드는 HL-60 세포와 NB4 세포의 CD11c 발현도 증가시켰으나 THP-1 세포에서는 아무런 영향이 없었다. CD11c의 발현과 비교하여 CD11b의 발현은 Flt-3 리간드에 의하여 KG-1 세포에서는 약하게 증가하였으나 NB4 세포와 HL-60 세포에서는 증가되지 않았다. KG-1 세포를 Flt-3 리간드로 처리하였을 때 extracellular signal-regulated kinase-1/2 (ERK-1/2)와 p38-mitogen-activated protein kinase (p38-MAPK)의 단백질 인산화가 증가되었으며 Flt-3 리간드에 의한 CD11c 발현의 증가는 MEK의 억제제인PD98059에 의하여 사라짐을 확인하였다. 본 연구 결과는 Flt-3 수용체 리간드의 처리에 의하여 $CD34^+$ myelomonocyte분화 단계인 KG-1 세포와 promyelocyte 분화 단계의 백혈병 세포에서 수지상 세포와 유사한 세포 형으로 분화된다는 것을 보였고 Flt-3 수용체 리간드에 의한 이들 백혈병 세포의 수지상 세포유사 세포로의 분화는 ERK-1/2의 활성화에 의하여 일어날 수 있음을 보여 준다.

Effects of a Tetramethoxyhydroxyflavone on the Expression of Inflammatory Mediators in LPS-Treated Human Synovial Fibroblast and Macrophage Cells

  • Yoon, Do-Young;Cho, Min-Chul;Kim, Jung-Hee;Kim, Eun-Jin;Kang, Jeong-Woo;Seo, Eun-Hee;Shim, Jung-Hyun;Kim, Soo-Hyun;Lee, Hee-Gu;Oh, Goo-Taeg;Hong, Jin-Tae;Park, Joo-Won;Kim, Jong-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.686-694
    • /
    • 2008
  • The inhibitory effects of 5,6,3',5'-tetramethoxy 7,4'-hydroxyflavone (labeled as p7F) were elucidated on the productions of proinflammatory cytokines as well as inflammatory mediators in human synovial fibroblasts and macrophage cells. p7F inhibited IL-1${\beta}$ or TNF-${\alpha}$ induced expressions of inflammatory mediators (ICAM-1, COX-2, and iNOS). p7F also inhibited LPS-induced productions of nitric oxide and prostaglandin $E_2$ in RAW 264.7 cells. In order to investigate whether p7F would inhibit IL-1 signaling, p7F was added to the D10S Th2 cell line (which is responsive to only IL-1${\beta}$ and thus proliferates), revealing that p7F inhibited IL-1${\beta}$-induced proliferation of D10S Th2 cells in a dose-response manner. A flow cytometric analysis revealed that p7F reduced the intracellular level of free radical oxygen species in RAW 264.7 cells treated with hydrogen peroxide. p7F inhibited IkB degradation and NF-${\kappa}$B activation in macrophage cells treated with LPS, supporting that p7F could inhibit signaling mediated via toll-like receptor. Taken together, p7F has inhibitory effects on LPS-induced productions of inflammatory mediators on human synovial fibroblasts and macrophage cells and thus has the potential to be an anti-inflammatory agent for inhibiting inflammatory responses.