• Title/Summary/Keyword: TNF receptor

Search Result 337, Processing Time 0.026 seconds

Protective effect of Litsea japonica fruit flesh extract on indomethacin-induced gastritis in rats (흰쥐에서 인도메타신으로 유발된 위염에 대한 까마귀쪽나무열매추출물의 보호효과)

  • Park, Sung-Hwan;Park, In-Jae;Yun, Ji-Hyun;Choi, Goo-Hee;Kim, Hyun-Jung;Seo, Yun-Hee;Cho, Ju-Hyun
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1017-1024
    • /
    • 2017
  • The objective of this study was to investigate the inhibitory effects of Litsea japonica fruit flesh extract (LJF-HE) on gastritis in an indomethacin-induced SD rat model. Rats were randomly divided into six groups: G1 (normal group), G2 (control group, indomethacin-induced gastritis), G3 (positive group, indomethacin-induced gastritis and ranitidine 50 mg/kg), G4 (LJF-HE-L group, indomethacin-induced gastritis and L. japonica fruit flesh extract at 30 mg/kg), G5 (LJF-HE-M group, indomethacin-induced gastritis and L. japonica fruit flesh extract at 60 mg/kg), G6 (LJF-HE-H group, indomethacin-induced gastritis and L. japonica fruit flesh extract at 120 mg/kg). In the group treated with LJF-HE (G4, G5, and G6), gastric mucosal damage, gastric juice secretion and pepsin activity were significantly decreased compared to the control group. Additionally, there were decreases in the expression of cholecystokinin 2 receptor (CCK-2r), histamine receptor H2 (H2r) and H+/K+ ATPase in the gastric lesions. The plasma levels of TNF-${\alpha}$ and IL-$1{\beta}$ significantly decreased in LJF-HE (G4, G5, and G6) treated groups compared with control. The plasma level of PGE2 was also significantly increased by LJF-HE (G5 and G6). These results suggest that LJF-HE (G4, G5, and G6) has the ability to inhibit on indomethacin-induced gastritis.

Effects of GyeongshinhaeGihwan 1(GGT1) on the Expression of Obesity-related Genes in Obese Male hGHTg Rats (경신해지환(輕身解脂丸) (GGT1)이 형질전환 비만모델 hGHTg 수컷 쥐의 비만관련 유전자 발현에 미치는 영향)

  • Jung Yang-Sam;Yoon Mi-Chung;Kim Gyeong-Cheol;Shin Soon-Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.93-97
    • /
    • 2006
  • To investigate whether GyeongshinhaeGihwan 1(GGT1), an anti-obesity herbal medicine widely used in oriental medicine, regulates the expression of obesity-related genes, we measured the changes in mRNA levels of these genes by GGT1 in human growth hormone transgenic (hGHTg) obese male rats, and these effects by GGT1 were compared with those of reductil (RD), an anti-obesity drug approved by FDA. Rats received once daily oral administrations of autoclaved water, RD, or GGT1 for 8 weeks. At the end of study, rats were sacrificed and tissues were harvested. Total RNA from adipose tissue, liver and kidney was prepared and the mRNA levels for LPL (lipoprotein lipase), PPAR $\gamma$ (peroxisome proliferator activated receptor-gamma), PPAR$\delta$ (peroxisome proliferator activated receptor-delta), leptin, TNF$\alpha$ (tumor necrosis factor-alpha), and internal standard G3PDH (glyceraldehyde-3- phosphate dehydrogenase) were analyzed by RT-PCR. PPAR$\gamma$ mRNA levels of liver and kidney were decreased in drug-treated groups compared with control group and the decrease of PPAR$\gamma$ expression was more prominent in GGT1 group than in RD group, suggesting that GGT1 is effective in the inhibition of adipogenesis and lipid storage by decreasing the PPAR$\gamma$ expression. In contrast, PPAR$\delta$ mRNA levels of adipose tissue and kidney were increased by RD and GGT1 , and the magnitudes of increase were higher in GGT1 group than in RD group, indicating that GGT1 stimulates fatty acid oxidation and energy metabolism by activating PPAR$\delta$ expression, Compared with control and RD groups, GGT1 group had higher concentrations of serum leptin, a well-known inhibitor of appetite. However, The mRNA levels of leptin, LPL, and TNF$\alpha$ were not changed by GGT1 and RD, compared with DW. These results demonstrate that GGT1 not only decreases PPAR$\gamma$ expression of liver and kidney, but also increases PPAR$\delta$ expression of adipose tissue and kidney, leading to the regulation of obesity and that these effects were more pronounced in GGT1 group compared with RD group. In addition, GGT1 seems to prevent obesity by increasing the serum leptin levels.

Detrimental effects of lipopolysaccharides on maturation of bovine oocytes

  • Zhao, Shanjiang;Pang, Yunwei;Zhao, Xueming;Du, Weihua;Hao, Haisheng;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1112-1121
    • /
    • 2019
  • Objective: Gram-negative bacteria lipopolysaccharide (LPS) has been reported to be associated with uterine impairment, embryonic resorption, ovarian dysfunction, and follicle retardation. Here, we aimed to investigate the toxic effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Methods: First, we developed an in vitro model to study the response of bovine cumulusoocyte complexes (COCs) to LPS stress. After incubating germinal vesicle COCs in $10{\mu}g/mL$ of LPS, we analyzed the following three aspects: the expression levels of the LPS receptor toll-like receptor 4 (TLR4) in COCs, activities of intracellular signaling protein p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-${\kappa}B$); and the concentrations of interleukin (IL)-$1{\beta}$, tumor necrosis factor (TNF)-${\alpha}$, and IL-6. Furthermore, we determined the effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Results: The results revealed that LPS treatment significantly elevated TLR4 mRNA and protein expression levels in COCs. Exposure of COCs to LPS also resulted in a marked increase in activity of the intracellular signaling protein p-p38 MAPK and NF-${\kappa}B$. Furthermore, oocytes cultured in maturation medium containing LPS had significantly higher concentrations of the proinflammatory cytokines IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. LPS exposure significantly decreased the first polar body extrusion rate. The cytoplasmic maturation, characterized by polar body extrusion and distribution of peripheral cortical granules, was significantly impaired in LPS-treated oocytes. Moreover, LPS exposure significantly increased intracellular reactive oxygen species levels and the relative mRNA abundance of the antioxidants thioredoxin (Trx), Trx2, and peroxiredoxin 1 in oocytes. Moreover, the early apoptotic rate and the release of cytochrome C were significantly increased in response to LPS. The cleavage, morula, and blastocyst formation rates were significantly lower in parthenogenetically activated oocytes exposed to LPS, while the incidence of apoptotic nuclei in blastocysts was significantly increased. Conclusion: Together, these results provide an underlying mechanism by which LPS impairs maturation potential in bovine oocytes.

Immuno-enhancing and Anti-obesity Effect of Abelmoschus manihot Root Extracts (금화규(Abelmoschus manihot) 뿌리 추출물의 면역증진 및 항비만효과)

  • Yu, Ju Hyeong;Geum, Na Gyeong;Ye, Joo Ho;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.411-419
    • /
    • 2021
  • In this study, we investigated in vitro immune-enhancing and anti-obesity activity of Abelmoschus manihot roots (AMR) in mouse macrophage RAW264.7 cells and mouse adipocytes 3T3-L1 cells. AMR increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. The inhibition of toll like receptor (TLR) 2 and 4 blocked AMR-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of mitogen-activated protein kinases (MAPKs) signaling pathway reduced AMR-mediated production of immunostimulatory factors. From these results, AMR is considered to have immune-enhancing activity through TLR2/4-mediated activation of MAPKs signaling pathway. In addition, AMR inhibited lipid accumulation and reduced the protein level such as CCAAT enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin and fatty acid binding protein 4 (FABP4) associated with lipid accumulation in 3T3-L1 cells, indicating that AMR may have anti-obesity activity. Based on these results, AMR is expected to be used as a potential functional agent for immune enhancement and anti-obesity.

The study of anti-inflammatory effect of Hyeonto-dan extract in RAW 264.7 macrophage (현토단(玄兎丹)의 RAW 264.7 대식 세포에서의 항염증 효과에 관한 연구)

  • Kim, Ma-Ryong;Kang, Ok-Hua;Kong, Ryong;Seo, Yun-Soo;Zhou, Tian;Kim, Sang-A;Kim, Eun-Su;Sin, Min-A;Lee, Young-Seob;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Objectives : This study aimed to investigate the unknown mechanisms behind the anti- inflammatory activity of Hyeonto-dan(HT) 70% ethanol extract on LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with Hyeonto-dan 1 h prior to addition of 200 ng/mL of LPS. Cell viability was measured by the MTS assay. Nitric oxide levels were determined by the Griess assay. $PGE_2$ were measured using EIA kit. Pro-inflammatory cytokine production was measured by the enzyme-linked immunosorbent assay (ELISA). The expression of COX-2, iNOS, and MAPKs was investigated by Western blot, qRT-PCR. $NF-{\kappa}B$/p65 localization and interaction of the TLR-4 receptor with LPS was examined by immunofluorescence assays. Results : Hyeonto-dan had no cytotoxicity at the measured concentration. Hyeonto-dan inhibited NO production and pro-inflammatory cytokines such as IL-6, $TNF-{\alpha}$, and PGE2 as well as the protein and mRNA expression of iNOS and COX-2. Moreover, Hyeonto-dan inhibited the interaction between LPS and TLR-4 in murine macrophages. It suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2), c-jun N-terminal kinase (JNK 1/2) and p38. Finally, it inhibited translocation of $NF-{\kappa}B$ in response to competitive LPS. Conclusions : Based on the results of this study, Hyeonto-dan inhibited the binding of TLR-4 receptor to LPS and inhibited the phosphorylation of extracellular signaling pathway MAPKs. These inhibitory effects are thought that the amount of $NF-{\kappa}B$ delivered to the nucleus was decreased and the inflammatory reaction was prevented by decreasing the production of LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$.

Roles of Local Estrogen and Progesterone Mediated Receptors in the Regulation of Endometrial Inflammation (자궁내막 염증에 대한 지엽적 에스트로겐 및 프로게스테론 매개 수용체의 역할)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.102-113
    • /
    • 2023
  • This review discusses the cellular and molecular mechanisms by which the endometrial estrogen and progesterone receptors regulate local estrogen production, expression of the specific estrogen receptors, progesterone resistance, inflammatory responses and the differentiation and survival of endometriotic cells in endometrial inflammation. The epigenetic aberrations of endometrial stromal cells play an important role in the pathogenesis and progression of endometriosis. In particular, differential methylation of the estrogen receptor genes changes in the stromal cells the dominancy of estrogen receptor from ERα into ERβ, and results in the abnormal estrogen responses including inflammation, progesterone resistance and the disturbance of retinoid synthesis. These stromal cells also stimulate local estrogen production in response to PGE2 and the SF-1 mediated induction of steroidogenic enzyme expression, and the increased estradiol then feeds back into the ERβ to repeat the vicious inflammatory cycle through the activation of COX-2. In addition, high levels of ERβ expression may also change the chromatin structure of endometrial mesenchymal stem cells, and together with the repeated menstrual cycles can induce formation of the endometriotic tissue. The cascade of these serial events then leads to cell adhesion, angiogenesis and survival of the differentiation-disregulated stromal cells through the action of inflammatory factors such as ERβ-mediated estrogen, TNF-α and TGF-β1. Therefore, understanding of the dynamic hormonal changes during the menstrual cycle and the corresponding signal transduction mechanisms of the related nuclear receptors in endometrium would provide new insights for treating inflammatory diseases such as the endometriosis.

Double-stranded RNA Induces Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Park, Chan-Hee;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.253-257
    • /
    • 2004
  • Schwann cells play an important role in peripheral nerve regeneration. Upon neuronal injury, activated Schwann cells clean up the myelin debris by phagocytosis, and promote neuronal survival and axon outgrowth by secreting various neurotrophic factors. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that certain cytoplasmic molecules, which are secreted by cells undergoing necrotic cell death, induce immune cell activation via the toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. Accordingly, this study was undertaken to examine the expression and the function of the TLRs on primary Schwann cells and iSC, a rat Schwann cell line. The transcripts of TLR2, 3, 4, and 9 were detected on the primary Schwann cells as well as on iSC. The stimulation of iSC with poly (I : C), a synthetic ligand for the TLR3, induced the expression of $TNF-{\alpha}$ and RANTES. In addition, poly (I : C) stimulation induced the iNOS expression and nitric oxide secretion in iSC. These results suggest that the TLRs may be involved in the inflammatory activation of Schwann cells, which is observed during Wallerian degeneration after a peripheral nerve injury.

Effects of Rhei Rhizoma and Moutan Cortex on Inflammation and Insulin Resistance in Endothelial Cells Stimulated with Palmitic Acid (팔미트 지방산으로 자극된 혈관내피세포에서 대황 및 목단피가 염증 및 인슐린 저항성에 미치는 효과)

  • Lee, Joon Suh;Lee, Jae-Cheol;Yun, Yong-Gab
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • Rhei Rhizoma (RR) and Moutan cortex (MC) have been reported to have anti-inflammatory effects. However, little is known about the effects of RR and MC on endothelial inflammation and insulin resistance (IR). This study aims to investigate whether the water extracts of RR and MC could exert protection against palmitic acid (PA)-induced inflammation and IR in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 6 h with RR or MC, and then exposed to PA for 24 h. The levels of interleukin-6 (IL-6) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were determined by enzyme-linked immunosorbant assay kits. Western blot analysis was performed for activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and insulin receptor substrate-1 (IRS-1). In HUVECs stimulated with PA, both RR and MC significantly inhibited the production of TNF-${\alpha}$ and IL-6 and the activation of NF-${\kappa}B$. At the same concentrations, the inhibitory effects of RR were more potent than those of MC. PA reduced insulin-induced phosphorylation of IRS-1, which was reversed by RR and MC. The results suggest that RR and MC are effective in inhibiting PA-associated endothelial inflammation and ameliorating IR by beneficial regulation of NF-${\kappa}B$ and IRS-1 activation.

The Protective Role of TLR3 and TLR9 Ligands in Human Pharyngeal Epithelial Cells Infected with Influenza A Virus

  • Han, Yan;Bo, Zhi-Jian;Xu, Ming-Yu;Sun, Nan;Liu, Dan-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • In this study we aim to extensively investigate the anti-influenza virus immune responses in human pharyngeal epithelial cell line (Hep-2) and evaluate the protective role of Toll-like receptor (TLR) ligands in seasonal influenza A H1N1 (sH1N1) infections in vitro. We first investigated the expression of the TLRs and cytokines genes in resting and sH1N1 infected Hep-2 cells. Clear expressions of TLR3, TLR9, interleukin (IL)-6, tumour necrosis factor (TNF)-${\alpha}$ and interferon (IFN)-${\beta}$ were detected in resting Hep-2 cells. After sH1N1 infection, a ten-fold of TLR3 and TLR9 were elicited. Concomitant with the TLRs activation, transcriptional expression of IL-6, TNF-${\alpha}$ and IFN-${\beta}$ were significantly induced in sH1N1-infected cells. Pre-treatment of cells with poly I:C (an analog of viral double-stranded RNA) and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide) resulted in a strong reduction of viral and cytokines mRNA expression. The results presented indicated the innate immune response activation in Hep-2 cells and affirm the antiviral role of Poly I:C and CpG-ODN in the protection against seasonal influenza A viruses.

Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

  • Sim, Mi-Ok;Lee, Hae-In;Ham, Ju Ri;Seo, Kwon-Il;Kim, Myung-Joo;Lee, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.364-369
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS: Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS: Chronic alcohol intake significantly increased serum tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-${\alpha}$ gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS: The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system.