• Title/Summary/Keyword: TNF

Search Result 4,092, Processing Time 0.033 seconds

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

Effect of TNF-$\alpha$ Gene Transfer to Respiratory Cancer Cell Lines on Sensitivity to Anticancer drugs (호흡기계암세포주에서 TNF-$\alpha$ 유전자의 이입이 항암제 감수성에 미치는 효과)

  • Mo, Eun-Kyung;Lee, Jae-Ho;Lee, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Choi, Hyung-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.302-313
    • /
    • 1995
  • Background: Tumor necrosis factor(TNF) showed antitumor cytolytic effects on sensitive tumor cells in numerous in vivo and in vitro studies. But it could not be administered systemically to human because of severe systemic adverse effects at effective concentrations against tumor cells. Many studies showed that a high concentrations of TNF in the local milieu may evoke in vivo TNF-responsive mechanisms sufficient to suppress tumor growth. Recently developed technique of TNF gene transfer to tumor cells using retrovirus vector could be a good candidate for local TNF administration. TNF is also known to synergistically enhance in vitro cytotoxicity of chemotherapeutic drugs targeted to DNA topoisomerase II against TNF-sensitive tumor cell lines. In this study the in vitro chemosensitivity against DNA topoisomerase II targeted chemotherapeutic drugs was evaluated using some respiratory cancer cell lines to which TNF gene had been transferred. Method: NCI-H2058, a human mesothelioma cell line, A549, a human lung adenocarcinoma cell line and WEHI 164 cell line, a murine fibrosarcoma cell line were treated with etoposide and doxorubicin, which are typical topoisomerase II - targeted chemotherapeutic agents, at different concentration. The resultant cytotoxicity was measured by MIT assay. Then the cytotoxicity of the same chemotherapeutic agents was measured after TNF-$\alpha$ gene-transfer and the two results were compared. Results: The cytotoxicity was not increased significantly in WEHI164 cell line and A549 cell line but statistically significant increase was observed in H2058 cell line when TNF-$\alpha$ gene was transferred(p<0.05). Conclusion: These findings show that TNF-$\alpha$ gene transfer to respiratory cancer cell lines results in variable effects on chemosensitivity against topoisomerase II inhibitor among different cell lines in vitro and can be additively cytotoxic in certain selective tumor cell lines.

  • PDF

Comparison of TNF-Mediated Glucose Catabolism between the TNF-Sensitive and -Resistant Cell Lines

  • Kim, Yeon-Hyang;Park, Bok-Ryun;Cheong, Hee-Sun;Kwon, Oh-Hwan;Kim, Dae-Que;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.140-146
    • /
    • 1999
  • When murine fibrosarcoma L929 cells, a TNF-sensitive cell line, were treated with recombinant human tumor necrosis factor-$\alpha$ (rhTNF-$\alpha$), the activities of glycolytic regulatory enzymes and lactate dehydrogenase increased up to 100-150% compared to the control L929 cells after TNF treatment. By using various metabolic inhibitors and activators, it was found that cAMP-dependent protein kinase is responsible for the increase of activities of the glycolytic enzymes. The activities of glycolytic regulatory enzymes and lactate dehydrogenase of TNF-resistant A549 cells, a human lung carcinoma cell line, did not increase significantly compared to TNF-sensitive L929 cells upon TNF treatment. In contrast, the pyruvate carboxylase activities of A549 cells, but not L929 cells, increased up to 30~40% after TNF treatment. The data suggest that pyruvate carboxylase activity may contribute to the compensation of energy loss mediated by TNF treatment in TNF-resistant A549 cells.

  • PDF

Antigenicity Studies of M3S Tumor Necrosis Factor-$\alpha$(M3S TNF), a TNF Mutein (M3S Tumor Necrosis Factor-$\alpha$(M3S TNF)의 항원성)

  • 한형미;손경희;오현정;최경백;정승태;선우연;신남규;신항철
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.203-208
    • /
    • 1997
  • The antigenic potential of M3S tumor necrosis factor-$\alpha$(M3S TNF), which is a mutated form of TNF(TNF mutein) designed to reduce adverse effects of wild type human TNF, was investigated in the present study. The antigenicity of M3S TNF was examined by conducting active systemic anaphylaxis (ASA) test in guinea pigs, heterologous(mouse-rat) passive cutaneous anaphylaxis(PCA) test and passive hemagglutination(PHA) test. The experimental animals were divided into low, medium, high and the highest dose groups and the groups with or without immunoadjuvant, sensitized according to the appropriate schedule and challenged. In ASA test, when challenged with 120 $\mu\textrm{g}$ /animal, moderate to severe positive anaphylactic responses were observed in groups sensitized with 12 $\mu\textrm{g}$ /animal, 120 $\mu\textrm{g}$ /animal and 120 $\mu\textrm{g}$ /animal+Freund's complete adjuvant. In PCA test, positive responses were observed in the group sensitized with the highest dose emulsified with an alum(12 $\mu\textrm{g}$ /animal+alum). In PHA test, positive responses were observed in the group sensitized with 3 $\mu\textrm{g}$ /animal emulsified with an alum. All the other groups in each experiment showed negative responses. Based on these results, M3S TNF is considered to have some antigenic potential.

  • PDF

Differential Effects of TNF-${\alpha}$ on the Survival and Apoptosis of Human Granulocytes and the Human Myeloid Leukemia Cell Line

  • Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2013
  • Tumor necrosis factor-alpha (TNF-${\alpha}$) is a proinflammatory cytokine that mediates the inflammatory response and immune functions, and modulates the proliferation, differentiation and cell death of cancer cells. The differential functions of TNF-${\alpha}$ in various human cells due to the formation of different stimulating pathway upon the binding of TNF-${\alpha}$ to its receptors. In the present study, we examined the different effects of TNF-${\alpha}$ on the survival and apoptosis between normal granulocytes and human myeloid leukemia HL-60 cells. Although TNF-${\alpha}$ did not affect on the constitutive apoptosis of granulocytes, TNF-${\alpha}$ strongly induced the apoptosis of HL-60 cells in a dose- and a time-dependent manner. TNF-${\alpha}$-induced apoptosis was occurred via the activation of caspase 8, caspase 9 and caspase 3/7 and the induction of ROS production in HL-60 cells. Also, BAY-11-7085, a NF-${\kappa}B$ inhibitor, blocked the TNF-${\alpha}$-induced apoptosis in HL-60 cells. NF-${\kappa}B$ may be involved in TNF-${\alpha}$-induced apoptotic signaling pathway in HL-60 cells. These results suggest that TNF-${\alpha}$ activates apoptotic pathways and its process depends on cell type and many cellular factors. A better understanding of the differential effect of TNF-${\alpha}$ on cell apoptosis and survival may provide important information that can be used to elucidate the specific inhibitory effect of TNF-${\alpha}$ on the cancer dis.

Upregulation of TNF-α by Triglycerides is Mediated by MEK1 Activation in Jurkat T Cells

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • Triglyceride (TG) is known to be associated with inflammatory disease including atherosclerosis. In a variety of atherosclerosis models, T lymphocytes are localized in the earliest lesions of atherosclerosis. T cell associated cytokines such as $TNF-{\alpha}$ and $IFN-{\gamma}$ have pre-dominant inflammatory effects in chronic vascular diseases. In our previous study, we found that the expression of $TNF-{\alpha}$ and its receptor, $TNF-{\alpha}R$ was increased when Jurkat T lymphocyte cell lines were exposed to TGs. Therefore, experiments were conducted to determine which cell signaling pathway are involved in the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs. To identify signal transduction pathways involved in TG-induced upregulation of $TNF-{\alpha}$, we treated TG-exposed Jurkat T cells with specific inhibitors for MEK1, PI3K, $NF-{\kappa}B$ and PKC. We found that inhibition of the MEK1 pathway blocked TG-induced upregulation of $TNF-{\alpha}$. However, the expression level of $TNF-{\alpha}R$ did not change with any signal transduction inhibitor. Based on this observation, we suggest that increase of exogenous TG induces increase of $TNF-{\alpha}$ expression through MEK1 pathway in Jurkat T cells. In addition, it was confirmed that the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs occurs via different pathways.

The Effect of Tumor Necrosis Factor-Alpha on Glomerular Epithelial Cells in Glomerular Permeability ($TNF-{\alpha}$가 토리 상피세포의 투과성에 미치는 영향)

  • Cho Min-Hyun;Lee Ji-Hye;Koo Ja-Hoon;Ko Cheol-Woo
    • Childhood Kidney Diseases
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Purpose : Minimal Change Disease (MCD) is the most common primary nephrotic syndrome in children. Some suggested that tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) are involved in the pathogenesis of MCD. Methods : This study was done to see the changes of plasma and urinary $TNF-{\alpha}$, and its effect on the determination of permeability of the glomerular basement membrane (BM) contributed by heparan sulfate proteoglycan (HSPG). Study patients consisted of 19 biopsy-proven MCD children aged 2-15 years old. Both plasma and urinary $TNF-{\alpha}$ were measured. Employing the Millicell system, $TNF-{\alpha}$ was screened for the permeability factors. We examined whether $TNF-{\alpha}$ regulated BM HSPG gene expression and HS synthesis in the glomerular epithelial cells (GECs). Results : Urinary $TNF-{\alpha}$ during relapse was significantly increased when compared with that of during remission or controls ($364.4{\pm}51.2$ vs $155.3{\pm}20.8,\;36.0{\pm}4.5$ ng/mg cr) (P<0.05). However, negative results were obtained in the permeability assay using the Millicell system. No difference was seen in the BM HSPG gene expression and HS synthesis in the GECs. Conclusion : It seems that $TNF-{\alpha}$ may not play a disease-specific role in the pathogenesis of MCD.

  • PDF

Potentiation of Antitumor Effect of Radiotherapy by Recombinant Tumor Necrosis Factor-$\alpha$ (방사선의 항암작용에 대한 재조합 TNF-$\alpha$의 효과)

  • Seong Jinsil;Shin Hang Chul;Kim Gwi Eon;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.225-231
    • /
    • 1998
  • Purpose : To determine whether TNF-$\alpha$ increases the antitumor effect of radiotherapy in murine syngeneic tumor system. Materials and Methods : Syngeneic murine tumors of MCa-K or MCa-4 (mammary carcinoma), OCa-I (ovarian carcinoma), or HCa-I(hepatocarcinoma were grown in hind legs of C3Hf/HeJ mice. When tumors were grown to 6 mm in mean diameter mice were treated with TNF-$\alpha$, radiation, or combination of the both. Gamma-radiation was given as a single dose of 30 Gy for HCa-I and 15 Gy for other tumors using Cobalt-60 teletherapy unit. A novel TNF-$\alpha$ mutein developed in Korea, was intraperitoneally administered daily at a dose of 10 ug per mouse for 7 days. In combination of radiation and TNF-$\alpha$, the drug was started 1 hour after radiation. Tumor growth delay assay was used to measure the tumor response to the treatment. Results : Among 4 tested tumors, TNF-$\alpha$ alone showed significant antitumor activity in MCa-K and OCa-I tumors, which showed absolute growth delay (AGD) of 5.0 days and 6.5 days, respectively. In combination with radiation, TNF-$\alpha$ showed significant delay of AGD (41.1 days) in OCA-I compared to AGDs of TNF-$\alpha$ alone and radiation, i.e., 6.5 days and 26.9 days, respectively(p<0.05). Enhancement factor was 1.29 in OCa-I, which showed supraadditive effect. TNF-$\alpha$ did not show significant delay of AGDs in the remaining 3 tumors compared to AGDs of TNF-$\alpha$ alone and radiation. Conclusions: TNF-$\alpha$ alone showed antitumor effects in MCa-K and OCa-I. In combination with radiation, TNF-$\alpha$ acted in supraadditive way in OCa-I only. The results of this study imply that the combination of TNF-$\alpha$ and radiation has different therapeutic potential depending on tumor model and further study is advocated.

  • PDF

Changes of Plasma and Urinary $TNF-{\alpha}$ in Children with Minimal Change Nephrotic Syndrome and Its Role in Albumin Permeability (미세변화신증후군 환아에서 Tumor Necrosis Factor-${\alpha}$의 혈중 및 요중 변화와 알부민 투과성에 미치는 영향)

  • Cho Min-Hyun;Lee Hwan-Seok;Oh Hyun-Hee;Chung Ki-Young;Koo Ja-Hoon;Ko Cheol-Woo
    • Childhood Kidney Diseases
    • /
    • v.7 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Purpose : Minimal Change Disease(MCD) is the most common primary nephrotic syndrome in children. Some suggested that tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) are involved in the pathogenesis of MCD. This study was done to see the changes of plasma and urinary $TNF-{\alpha}$, and their effects on the permeability of glomerular basement membrane. Methods : Study patients consisted of 19 biopsy-proven MCD children aged 2-15 years old. Both plasma and urinary $TNF-{\alpha}$ were measured. Employing the Millicell system, $TNF-{\alpha}$ were screened for the permeability factors. Results : Urinary $TNF-{\alpha}$ during relapse was significantly increased(P<0.01). No significant change was seen in the plasma $TNF-{\alpha}$ during relapse when compared to those in remission and the healthy controls. Furthermore, in the in vitro Millicell system, $TNF-{\alpha}$ did not produce a significant change in albumin permeability. Conclusion : Therefore, it seems that $TNF-{\alpha}$ may not play a disease-specific role in the pathogenesis of MCD.

  • PDF

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells (펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구)

  • Jeong, Ji-Young;Son, Yonghae;Kim, Bo-Young;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1251-1257
    • /
    • 2019
  • Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.