• Title/Summary/Keyword: TMPRSS4

Search Result 4, Processing Time 0.019 seconds

TMPRSS2:ETS Fusions and Clinicopathologic Characteristics of Prostate Cancer Patients from Eastern China

  • Dong, Jun;Xiao, Li;Sheng, Lu;Xu, Jun;Sun, Zhong-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3099-3103
    • /
    • 2014
  • TMPRSS2:ERG gene fusions in prostate cancer have a dominant prevalence of approximately 50.0%, but infomration is limited on differences among ethnic and geographical groups. Some studies focusing on Japanese and Korean patients reported a lower incidence. Investigations concerning Chinese revealed controversial results. We evaluated TMPRSS2:ERG, TMPRSS2:ETV1 and TMPRSS2:ETV4 fusions in more than 100 Eastern Chinese prostate cancer patients. Paraffin blocks of needle biopsy and radical prostatectomy were collected from 91 and 18 patients respectively. All patients' clinicopathologic factors were gathered. TMPRSS2:ERG, TMPRSS2:ETV1 and TMPRSS2:ETV4 fusions were tested by multi-probe fluorescence in situ hybridization (FISH) assay. TMPRSS2:ERG fusions was present in 14.3% biopsy specimens and 11.1% radical prostatectomy patients. Neither TMPRSS2:ETV1 nor TMPRSS2:ETV4 fusion was found in any case. Altogether, 13 (86.7%) TMPRSS2:ERG fusion positive cases possessed deletion pattern and 7 (46.6%) and insertion pattern. Some 5 cases had both deletion and insertion patterns. While 38.5% (5/13) patients with deletion pattern had distant metastasis, except for one metastatic case harboring both deletion and insertion, there were no patients with insertion pattern accompanied with metastasis. There were no differences between fusion positive and negative cases in the distribution of age, PSA, Gleason score and TNM stage. Eastern Chinese prostate cancer patients have a significantly low incidence of TMPRSS2:ERG fusion. They also lack TMPRSS2:ETV1 and TMPRSS2:ETV4 fusion. There are more deletion pattern than insertion pattern in TMPRSS2:ERG positive cases. Fusion positive and negative patients have no clinicopathologic factor differences.

Fusion Between TMPRSS2 and ETS Family Members (ERG, ETV1, ETV4) in Prostate Cancers from Northern China

  • Wang, Jian-Jiang;Liu, Yue-Xin;Wang, Wei;Yan, Wei;Zheng, Yu-Peng;Qiao, Lu-Dong;Liu, Dan;Chen, Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4935-4938
    • /
    • 2012
  • In this study we evaluated the frequency of fusion between TMPRSS2 and ETS family members (ERG, ETV1, ETV4) in prostate cancers in patients from northern China in order to explore differences in fusion rates among regions in northern and southern China, other parts of Asia, Europe, and North America. We examined 100 prostate cancer patients, diagnosed by means of prostate biopsy; fluorescence in situ hybridization (FISH) was used to detect the expression of TMPRSS2, ERG, ETV1 and ETV4 in cancer tissue. Differences in gene fusion rates among different ethnics groups were also analyzed. Of the 100 prostate cancer patients, 55 (55%) had the fusion gene. Among the patients with the fusion gene, 46 (83.6%) patients had the TMPRSS2:ERG fusion product, 8 (14.8%) patients had TMPRSS2:ETV1 fusion, 1 (1.6%) patient had TMPRSS2:ETV4.

The impact of COVID-19 on human reproduction and directions for fertility treatment during the pandemic

  • Lee, Dayong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.273-282
    • /
    • 2021
  • Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, resulting in a pandemic. The virus enters host cells through angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2). These enzymes are widely expressed in reproductive organs; hence, coronavirus disease 2019 (COVID-19) could also impact human reproduction. Current evidence suggests that sperm cells may provide an inadequate environment for the virus to penetrate and spread. Oocytes within antral follicles are surrounded by cumulus cells, which rarely express ACE2 and TMPRSS2. Thus, the possibility of transmission of the virus through sexual intercourse and assisted reproductive techniques seems unlikely. Early human embryos express coronavirus entry receptors and proteases, implying that human embryos are potentially vulnerable to SARS-CoV-2 in the early stages of development. Data on the expression of ACE2 and TMPRSS2 in the human endometrium are sparse. Moreover, it remains unclear whether SARS-CoV-2 directly affects the embryo and its implantation. A study of the effect of SARS-CoV-2 on pregnancy showed an increase in preterm delivery. Thus, vertical transmission of the virus from mother to fetus in the third trimester is possible, and further data on human reproduction are required to establish this possibility. Based on analyses of existing data, major organizations in this field have published guidelines on the treatment of infertility. Regarding these guidelines, despite the COVID-19 pandemic, reproductive treatment is crucial for the well-being of society and must be continued under suitable regulations and good standard laboratory practice protocols.

Membrane Proteins Involved in Epithelial-Mesenchymal Transition and Tumor Invasion: Studies on TMPRSS4 and TM4SF5

  • Kim, Semi;Lee, Jung Weon
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.12-20
    • /
    • 2014
  • The epithelial-mesenchymal transition (EMT) is one mechanism by which cells with mesenchymal features can be generated and is a fundamental event in morphogenesis. Recently, invasion and metastasis of cancer cells from the primary tumor are now thought to be initiated by the developmental process termed the EMT, whereby epithelial cells lose cell polarity and cell-cell interactions, and gain mesenchymal phenotypes with increased migratory and invasive properties. The EMT is believed to be an important step in metastasis and is implicated in cancer progression, although the influence of the EMT in clinical specimens has been debated. This review presents the recent results of two cell surface proteins, the functions and underlying mechanisms of which have recently begun to be demonstrated, as novel regulators of the molecular networks that induce the EMT and cancer progression.