• Title/Summary/Keyword: TMD damper

Search Result 217, Processing Time 0.036 seconds

Vibration Control of Offshore Platform using Tuned Mass Damper (동조질량감쇠기를 이용한 해양구조물의 진동제어)

  • Kim, Ju Myung;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.73-79
    • /
    • 2004
  • Tuned Mass Damper (TMD) was applied to control the vibration of an offshore structure due to ocean waves. The errors caused by the linearization of the fluid-structure interaction effect and the phenomena when using the linearized equation of motion in TMD design were analyzed. To determine the performance of TMD in controlling vibration, both regular waves with varying periods and irregular waves with different significant wave heights were used. When the offshore structure received regular waves with a period similar to the first natural period of structure. TMD performed well in terms of response reduction. Such was not the case for the other periods. however, In the case of irregular waves, TMD triggered the reduction of structural response for waves with relatively small significant wave height. For irregular waves with relatively big significant wave height, however, TMD did not show any control effect. Therefore, TMD is useful in reducing offshore structural vibration due to ambient waves, thereby helping secure fatigue life.

Application of MR Damper for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 MR 감쇠기의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.59-67
    • /
    • 2006
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. when TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned nTMDs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations due to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness or STMD with respect to equivalent TMD.

  • PDF

Investigation Into Optimal Installation Position of TMD for Efficient Seismic Response Reduction of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 효율적인 지진응답제어를 위한 TMD의 최적 설치 위치 분석)

  • Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, TMD(Tuned Mass Damper) is installed in a retractable-roof spatial structure in order to investigate dynamic response characteristics according to mass ratio and installed position of TMD on large spatial structures. The example analytical model is generated based on the Singapore sports hub stadium. Twenty eight analytical models are used to investigate optimal installation position of TMD for the example retractable-roof spatial structure using 4 to 16 TMDs. The mass of one TMD is set up 1% of total mass at the example analytical model. Displacement response ratio of model with TMD is compared with that of base model without TMD. It has been found from numerical simulation that it is more effective to install TMD at the edge of the spatial structure rather than to concentrate the TMD at the center of the spatial structure.

A Study on Optimum Mass of TMD for Improving Seismic Response Control Performance of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 지진 응답 제어 성능 향상을 위한 TMD의 최적 질량에 관한 연구)

  • Kim, Dong-Hyung;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the retractable-roof spatial structure was chosen as the analytical model and a tuned mass damper (TMD) was installed in the analytical model in order to control the seismic response. The analysis model is mainly consisted of runway trusses (RT) and transverse trusses (TT), and the displacement response was analyzed by installing TMD on those trusses. The mass of the single TMD which is installed in the analytical model was set to 1% of the total structure mass and the total TMD mass ratio was set to be 8% or 6%. In addition, the mass of a single TMD was varied depending on the number of installations. As a result of analyzing the optimal number of installations of TMD, the displacement response was reduced in all cases compared to the case without TMD. Above all, the case with 8 TMDs was the most effective in reducing he displacement response. However, in this case, as the load on the upper structure of the retractable-roof spatial structure increases, the total mass ratio of TMD was maintained and the number of TMDs was increased to reduce the mass ratio of one TMD.

Comparative Study of Tuned Mass Damper and Tuned Liquid Column Damper for Response Control of Building structures (동조질량감쇠기와 동조액체기둥감쇠기의 건물응답의 제어성능 비교연구)

  • 김홍진;김형섭;민경원;오정근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.427-434
    • /
    • 2003
  • In this study, the control performances of Tuned Mass Damper (TMD) and Tuned Liquid Column Damper (TLCD) are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special, it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.

  • PDF

Fuzzy Hybrid Control of a Smart TMD for Reduction of Wind Responses in a Tall Building (초고층건물의 풍응답제어를 위한 스마트 TMD의 퍼지 하이브리드제어)

  • Kim, Han-Sang;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • Fuzzy hybrid control technique with a smart tuned mass damper(STMD) was proposed in this study for the suppression of wind-induced motion of a tall building. To develop the effective control algorithm for a STMD, skyhook and groundhook control algorithms were employed. Usually, skyhook controller can effectively reduce STMD motion and groundhook controller shows good control performance for the reduction of building responses. In this study, fuzzy hybrid controller, which can determine an optimal weighting factor for combining two controllers in real time, was developed to improve the control performance of conventional hybrid controller using weighted sum approach. A 76-story office building was used as an example structure to investigate the performance of the proposed controller. A magnetorheological(MR) damper was used to develop a STMD and the control performance of STMD was evaluated comparing with the passive and active TMD. The numerical studies show that the control effectiveness of a STMD is significantly superior to that of the conventional TMD. It is also shown that fuzzy hybrid controller can effectively adjust skyhook and groundhook control algorithms and reduce both responses of STMD and building.

Seismic Response Control of Retractable-roof Spatial Structure Using Smart TMD (스마트 TMD를 이용한 개폐식 대공간 구조물의 지진응답제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.91-100
    • /
    • 2016
  • A retractable-roof spatial structure is frequently used for a stadium and sports hall. A retractable-roof spatial structure allows natural lighting, ventilation, optimal conditions for grass growth with opened roof. It can also protects users against various weather conditions and give optimal circumstances for different activities. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. A tuned mass damper (TMD) is widely used to reduce seismic responses of a structure. When a TMD is properly tuned, its control performance is excellent. Opened or closed roof condition causes dynamic characteristics variation of a retractable-roof spatial structure resulting in off-tuning. This dynamic characteristics variation was investigated. Control performance of a passive TMD and a smart TMD were evaluated under off-tuning condition.

Application of TMD for Seismic Response Control of Dome Structure (돔 구조물의 지진응답 제어를 위한 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • Vibration control devices are classified into passive, semi-active and active device. TMD(Tuned Mass Damper) is one of the passive control device that is mainly used to reduce vibration level of building structure and bridge structure. In this study, the application of passive tuned mass damper(TMD) to seismic response control of dome structures has been investigated. Because star dome structure has primary characteristics of dome structures, star dome structure was used as an example dome structure that is subjected to horizontal or vertical seismic loads. From this numerical analysis, it is shown that seismic response are influenced by vibration modes and it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.