• Title/Summary/Keyword: TLR1

Search Result 302, Processing Time 0.021 seconds

S100A8 Induces Secretion of MCP-1, IL-6, and IL-8 via TLR4 in Jurkat T Cells

  • Nam, A Reum;Kim, Da Hae;Kim, Mun Jeong;Lee, Ji-Sook;Yang, Seung-Ju;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.22 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In the pathogenesis of inflammatory diseases such as allergies, S100A8 acts as an important molecule and T lymphocytes are essential cytokine-releasing cells. In this study, we investigated the effect of S100A8 on release of cytokines, specifically MCP-1, IL-6, and IL-8 in T cells, and its associated signaling mechanism. S100A8 increased secretion of MCP-1, IL-6, and IL-8 in a time- and dose-dependent manner. Elevated secretion of MCP-1, IL-6, and IL-8 due to S100A8 was inhibited by the TLR4 inhibitor TLR4i, the PI3K inhibitor LY294002, the $PKC{\delta}$ inhibitor rottlerin, the ERK inhibitor PD98059, the p38 MAPK inhibitor SB202190, the JNK inhibitor SP600125, and the NF-${\kappa}B$ inhibitor BAY-11-7085. S100A8 induced phosphorylation of ERK, p38 MAPK, and JNK in a time-dependent manner, and activation was suppressed by TLR4i, LY294002, and rottlerin. S100A8 induced NF-${\kappa}B$ activation by $I{\kappa}-B{\alpha}$ degradation, and NF-${\kappa}B$ activity was suppressed by PD98059, SB202190, and SP600125. These results indicate that S100A8 induces cytokine release via TLR4. Study of PI3K, $PKC{\delta}$, MAPKs, and NF-${\kappa}B$ will contribute to elucidation of the S100A8-invovled mechanism.

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

Immunostimulatory Activity of Syneilesis palmata Leaves through Macrophage Activation and Macrophage Autophagy in Mouse Macrophages, RAW264.7 Cells

  • So Jung Park;Jeong Won Choi;Hyeok Jin Choi;Seung Woo Im;Jin Boo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.934-940
    • /
    • 2023
  • Syneilesis palmata (SP) is a traditional medicinal plant. SP has been reported to have anti-inflammatory, anticancer, and anti-human immunodeficiency virus (HIV) activities. However, there is currently no research available on the immunostimulatory activity of SP. Therefore, in this study, we report that S. palmata leaves (SPL) activate macrophages. Increased secretion of both immunostimulatory mediators and phagocytic activity was observed in SPL-treated RAW264.7 cells. However, this effect was reversed by the inhibition of TLR2/4. In addition, inhibition of p38 decreased the secretion of immunostimulatory mediators induced by SPL, and inhibition of TLR2/4 decreased the phosphorylation of p38 induced by SPL. SPL augmented p62/SQSTM1 and LC3-II expression. The increase in protein levels of p62/SQSTM1 and LC3-II induced by SPL was decreased by the inhibition of TLR2/4. The results obtained from this study suggest that SPL activates macrophages via TLR2/4-dependent p38 activation and induces autophagy in macrophages via TLR2/4 stimulation.

Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.938-947
    • /
    • 2023
  • In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.

Effect of Hovenia dulcis branches on Macrophage Activation and Macrophage Autophagy in RAW264.7 Cells

  • Ju-Hyeong Yu;Min Yeong Choi;Seung Woo Im;Hyeok Jin Choi;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.93-93
    • /
    • 2022
  • Hovenia dulcis, one of the traditional medicinal plants, is currently being used as a functional ingredient for the development of health functional foods that protects the liver from alcohol damage in Korea. A variety of pharmacological effects of Hovenia dulcis have been reported so far, but studies on immune-enhancing activity are insufficient. Thus, in this study, we report that Hovenia dulcis branches (HDB) induce the activation of macrophages. HDB increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. TLR4 inhibition blocked HDB-mediated production of immunostimulatory factors. In addition, the JNK inhibition reduced the HDB-mediated production of immunostimulatory factors, and the HDB-mediated JNK activation was blocked by the TLR4 inhibition. HDB increased the level of LC3-II and p62/SQSTM1. TLR4 inhibition blocked HDB-mediated increase in the level of LC3-II and p62/SQSTM1. These findings indicate that HDB may induce TLR4/JNK-dependent macrophage activation and TLR4-dependent macrophage autophagy.

  • PDF

Immunostimulatory Activity of Syneilesis palmata Leaves through Macrophage Activation and Macrophage Autophagy

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.44-44
    • /
    • 2023
  • Syneilesis palmata (SP) has been used as a traditional medicinal plant and vegetable. SP was reported to exert pharmacological activities such as anti-inflammation, anti-cancer, and anti-HIV. However, there are no studies on the immunostimulatory activity of SP. Thus, in this study, we report that S. palmata leaves (SPL) induce the activation of macrophages. An increase in both secretions of immunostimulatory mediators and phagocytotic activity was observed in SPL-treated RAW264.7 cells. However, this was reversed by inhibition of TLR2/4. In addition, the p38 inhibition reduced the SPL-mediated secretion of immunostimulatory mediators, and the SPL-mediated p38 activation was blocked by the TLR2/4 inhibition. SPL augmented both p62/SQSTM1 and LC3-II. TLR2/4 inhibition blocked the SPL-mediated increase of p62/SQSTM1 and LC3-II. These findings indicate that SPL may activate macrophages through TLR2/4-dependent p38 activation and activate autophagy through TLR2/4 stimulation.

  • PDF

TLR9 Expression in Uterine Cervical Lesions of Uyghur Women Correlate with Cervical Cancer Progression and Selective Silencing of Human Papillomavirus 16 E6 and E7 Oncoproteins in Vitro

  • Hao, Yi;Yuan, Jian-Ling;Abudula, Abulizi;Hasimu, Axiangu;Kadeer, Nafeisha;Guo, Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5867-5872
    • /
    • 2014
  • Background: Cervical cancer is listed as one of high-incidence endemic diseases in Xinjiang. Our study aimed to evaluate the expression of TLR9 in uterine cervical tissues of Uyghur women and examine associations with clinicopathological variables. We further characterized the direct effects of TLR9 upon the selective silencing of human papillomavirus (HPV) E6 and E7 oncoprotein expression in HPV 16-positive human cervical carcinoma cells treated with siRNA in vitro. Materials and Methods: Immunohistochemistry was applied to evaluate TLR9 expression in 97 formalin-fixed paraffin-embedded cervical samples from Uyghur women; 32 diagnosed with cervical squamous cell carcinomas (CSCC), 14 with low-grade cervical intraepithelial neoplasias (CINI), 10 medium-grade (CINII), 24 high-grade (CINIII), and 17 chronic cervicitis. $BLOCK-iT^{TM}$ U6 RNAi Entry Vector $pENTR^{TM}$/U6-E6 and E7 was constructed and transfected the entry clone directly into the mammalian cell line 293FT. Then the HPV 16-positive SiHa human cervical carcinoma cell line was infected with RNAi recombinant lentivirus. RT-PCR and Western blotting were used to determine the expression of TLR9 in both SiHa and HPV 16 E6 and E7 silenced SiHa cells. Results: Immunohistochemical staining showed that TLR9 expression was undetectable (88.2%) or weak (11.8%) in chronic cervicitis tissues. However, variable staining was observed in the basal layer of all normal endocervical glands. TLR9 expression, which was mainly observed as cytoplasmic staining, gradually increased in accordance with the histopathological grade in the following order: chronic cervicitis (2/17, 11.8%)

Effect of TLR4 and B7-H1 on Immune Escape of Urothelial Bladder Cancer and its Clinical Significance

  • Wang, Yong-Hua;Cao, Yan-Wei;Yang, Xue-Cheng;Niu, Hai-Tao;Sun, Li-Jiang;Wang, Xin-Sheng;Liu, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1321-1326
    • /
    • 2014
  • Background/Aim: Toll-like receptor 4 (TLR4) and B7-H1, both normally expressed restricted to immune cells, are found to be aberrantly expressed in a majority of human tumors and may play important roles in regulation of tumor immunity. It has been shown that urothelial bladder cancer (UBC) patients can manifest tumoral immune escape which may be a potential critical factor in tumor pathogenesis and progression. However, so far, the mechanisms of UBC-related immune escape have not been clarified. The aim of this study was to investigate the effect of TLR4 and B7-H1 on immune escape of UBC. Methods: Bladder cancer T24 cells were pre-incubated with LPS and co-cultured with tumor specific CTLs. CTL cytotoxicity and apoptosis rates were measured by MTT assay and flow cytometry, respectively. The effects of an ERK inhibitor on B7-H1 expression and CTL cytotoxicity against T24 cells were also evaluated. In addition, TLR4, B7-H1 and PD-1 protein expression was analyzed by immunohistochemistry in 60 UBC specimens and 10 normal urothelia. Results: TLR4 activation protected T24 cells from CTL killing via B7-H1 overexpression. However PD98059, an inhibitor of ERK, enhanced CTL killing of T24 cells by reducing B7-H1 expression. TLR4 expression was generally decreased in UBC specimens, while B7-H1 and PD-1 were greatly overexpressed. Moreover, expression of both B7-H1 and PD-1 was significantly associated with UICC stage and WHO grade classification. Conclusions: TLR4 and B7-H1 may contribute to immune escape of UBC. Targeting B7-H1 or the ERK pathway may offer new immunotherapy strategies for bladder cancer.

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.