• 제목/요약/키워드: TLR-dependent adjuvant

검색결과 4건 처리시간 0.015초

디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구 (The Evolution and Value of Diphtheria Vaccine)

  • 배경동
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.

Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity

  • Lee, Moon Hee;Jang, Jong-Hwa;Yoon, Gun Young;Lee, Seung Jun;Lee, Min-Goo;Kang, Tae Heung;Han, Hee Dong;Kim, Hyuk Soon;Choi, Wahn Soo;Park, Won Sun;Park, Yeong-Min;Jung, In Duk
    • BMB Reports
    • /
    • 제50권5호
    • /
    • pp.263-268
    • /
    • 2017
  • ${\beta}$-Agarase cleaves the ${\beta}$-1,4 linkages of agar to produce neoagarooligosaccharides (NAO), which are associated with various physiological functions. However, the immunological functions of NAO are still unclear. In this study, we demonstrated that ${\beta}$-agarase DagA-produced neoagarohexaose (DP6), an NAO product, promoted the maturation of dendritic cells (DCs) by Toll-like receptor 4 (TLR4). DP6 directly and indirectly enhanced the activation of natural killer (NK) cells in a TLR4-dependent manner in vitro and in vivo. Finally, the antitumor activity of DP6 against B16F1 melanoma cells was inhibited in NK cell-depletion systems by using NK-cell depleting antibodies in vivo. Collectively, the results indicated that DP6 augments antitumor immunity against B16F1 melanoma cells via the activation of DC-mediated NK cells in a TLR4-dependent manner. Thus, DP6 is a potential candidate adjuvant that acts as an immune cell modulator for the treatment of melanoma.

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum;Kwon, Sang-Hoon;Ahn, Chi-Seok;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyeok-Yil;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제44권11호
    • /
    • pp.758-763
    • /
    • 2011
  • Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.

Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells

  • Lee, Dahae;Kang, Ki Sung;Yu, Jae Sik;Woo, Jung-Yoon;Hwang, Gwi Seo;Eom, Dae-Woon;Baek, Seung-Hoon;Lee, Hye Lim;Kim, Ki Hyun;Yamabe, Noriko
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.284-289
    • /
    • 2017
  • Background: Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. Methods: LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. Results: The reduction in LLC-PK1 cell viability by $60{\mu}M$ FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with $60{\mu}M$ FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by $60{\mu}M$ FK506 treatment, whereas it was decreased after cotreatment with KRG. Conclusion: Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.