• Title/Summary/Keyword: TIR

Search Result 123, Processing Time 0.018 seconds

Genetic Diversity and Relationship in Soybean MDP (Mutant Diversity Pool) Revealed by TRAP and TE-TRAP Markers

  • Kim, Dong-Gun;Bae, Chang-Hyu;Kwon, Soon-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.32-32
    • /
    • 2019
  • Mutation breeding is the useful tool to improve agronomic traits in various crop species. Soybean is most important crop and is rich in protein and oil contents. Despite of the importance as economic value and various genetic resource of soybean, there have been limited studies of genetic relationship among mutant resources through radiation breeding. In this study, the agronomical phenotype for selecting various genetic resources was evaluated in 528 soybean mutant lines. As a result, 210 soybean mutants with their original cultivars were selected with various traits. We named 210 selected lines as Mutant Diversity Pool (MDP). The genetic diversity and the relationship of the MDP were investigated using TRAP and TE-TRAP markers. In TRAP analysis, sixteen primer combination (PC)s were used and a total of 551 fragments were amplified. The highest (84.00%) and the lowest (32.35%) polymorphism levels were showed in PC MIR157B+Ga5 and B14G14B+Ga3, respectively. The mean of PIC values was 0.15 ranging from 0.07 in B14G14B+Sa12 to 0.23 in MIR157B+Sa4. Phylogenetic and population structure analysis indicated that the 210 MDP lines dispersed to four groups among the wild types and their mutants. The highest genetic diversity among populations was observed between lines Paldal and 523-7 (Fst=0.409), whereas the lowest genetic diversity was between population KAS360-22 and 94seori (Fst=0.065). AMOVA showed 11.583 (21.0%) and 43.532 (79.0%) variations in inter and intra mutant population, respectively. Overall, the genetic similarity of each intra mutant populations was closer than that of inter mutant population. A total of 408 fragments were amplified in the 210 MDP using twelve PCs of TE-TRAP markers that were obtained from a combination of three TIR sequence of transposable elements (MITE-stowaway; M-s, MITE-tourist; M-t, PONG). The highest (77.42%) and the lowest (56.00%) polymorphism levels were showed in PONG+Sa4 and PONG+Sa12, respectively. The mean of PIC values was 0.15 ranging from 0.09 in M-s+Sa4 and M-s+Ga5 to 0.21 in M-t+Ga5. AMOVA of M-s showed 2.209 (20%) and 8.957 (80%) variations in inter and intra mutant population, respectively. AMOVA of M-t showed 2.766 (18%) and 12.385 (82%) variations in inter and intra mutant population, respectively. AMOVA of PONG showed 3.151 (29%) and 7.646 (71%) variations in inter and intra mutant population, respectively. According to our study, the PONG had higher inter mutant population and lower intra mutant population. This mean was that for aspect of radiation sensitivity, M-s and M-t showed higher mobility than that of PONG. Our results suggest that the TRAP and the TE-TRAP markers may be useful for assessing the genetic diversity and relationship among soybean MDP and help to improve our knowledge of soybean mutation/radiation breeding.

  • PDF

Distribution Analysis of Land Surface Temperature about Seoul Using Landsat 8 Satellite Images and AWS Data (Landsat 8 위성영상과 AWS 데이터를 이용한 서울특별시의 지표면 온도 분포 분석)

  • Lee, Jong-Sin;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.434-439
    • /
    • 2019
  • Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.

Transcriptomic Profile in Pear Leave with Resistance Against Venturia nashicola Infection (배 검은별무늬병 감염과 저항성 방어반응 연관 전사체 프로파일)

  • Il Sheob Shin;Jaean Chun;Sehee Kim;Kanghee Cho;Kyungho Won;Haewon Jung;Keumsun Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.36-36
    • /
    • 2022
  • The molecular understanding of resistance and susceptibility of host plants to scab, a most threatful disease to pome fruit production worldwide, is very limited. Comparing resistant line '93-3-98' to susceptible one 'Sweet Skin' at seven time points of 0, 0.5, 1, 2, 3, 4, 8 days post inoculation, RNA-sequencing data derived from infected and mock-inoculated young leaves were analyzed to evaluate the tolerant response and to mine candidate genes of pear to the scab pathogen Venturia nashicola. Analysis of the mapped reads showed that the infection of V. nashicola led to significant differential expression of 17,827 transcripts with more than 3-fold change in the seven pairs of libraries, of which 9,672 (54%) are up- and 8,155(46%) are down-regulated. These included mainly receptor (NB-ARC domains-containing, CC-NBS-LRR, TIR-NBS-LRR, seven transmembrane MLO family protein) and transcription factor (ethylene responsive element binding, WRKY DNA-binding protein) related gene. An arsenal of defense response of highly resistant pear accessions derived from European pear was probably supposed no sooner had V. nashicola infected its host than host genes related to disease suppression like Polyketide cyclase/dehydrase and lipid transport protein, WRKY family transcription factor, lectin protein kinase, cystein-rich RLK, calcium-dependent phospholipid-binding copine protein were greatly boosted and eradicated cascade reaction induced by pathogen within 24 hours. To identify transcripts specifically expressed in response to V. nashicola, RT-PCRs were conducted and compare to the expression patterns of seven cultivars with a range of highly resistant to highly susceptible symptom. A DEG belonging to the PR protein family genes that were higher expressed in response to V. nashicola suggesting extraordinary role in the resistance response were led to the identification. This study provides the first transcriptional profile by RNA-seq of the host plant during scab disease and insights into the response of tolerant pear plants to V. nashicola.

  • PDF